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Abstract 

This study presents a novel approach for optimizing the scheduling of plug-in hybrid electric 

vehicles (PHEVs) integrated with distributed generation systems. As PHEVs gain importance 

in the transition to sustainable transportation, effective energy management strategies are 

critical for maximizing their benefits. This research introduces an optimization model that 

considers various vehicle trip profiles, including daily commuting, long-distance travel, and 

variable trip frequencies. The model integrates distributed generation sources such as solar and 

wind energy to enhance charging efficiency and minimize operational costs. The performance of 

the proposed scheduling strategy was evaluated across different trip scenarios, focusing on key 

metrics such as energy utilization, cost savings, and emissions reduction using simulations. 

Results indicate that tailoring PHEV scheduling to specific trip profiles significantly enhances 

overall system efficiency, particularly when combined with renewable energy sources. This study 

contributes to the advancement of smart grid applications and highlights the importance of 

dynamic scheduling in fostering the adoption of PHEVs within sustainable energy systems. 

Keywords: Plug-in Hybrid Electric Vehicles (PHEVs), Distributed Generation, Energy 

Management, Smart Grid, Renewable Energy Integration 

1. Introduction 

1.1 Background 

Plug-in hybrid electric vehicles (PHEVs) represent a pivotal advancement in automotive 

technology, combining the features of traditional internal combustion engine (ICE) vehicles 

with electric propulsion systems. PHEVs are equipped with both an internal combustion engine 

and a rechargeable electric battery, allowing them to operate in either electric-only mode or 

hybrid mode, where the engine and electric motor work in tandem. This dual capability provides 

drivers with flexibility and a greater range of operational choices compared to fully electric 

vehicles (EVs). 

One of the primary advantages of PHEVs is their potential to reduce greenhouse gas (GHG) 

emissions. Transportation is a significant contributor to global emissions, accounting for 

approximately 14% of all GHG emissions. By transitioning to PHEVs, which can run on 

electricity generated from renewable sources, the carbon footprint associated with personal 

transportation can be substantially diminished. When charged from renewable energy sources 
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such as solar or wind, PHEVs can achieve near-zero emissions during operation, offering a 

cleaner alternative to conventional vehicles. Additionally, PHEVs can alleviate some of the 

challenges associated with fully electric vehicles, such as range anxiety and the fear of running 

out of battery power without access to charging stations. By providing an alternative fuel 

source, PHEVs ensure that drivers can complete longer trips without the need for frequent 

charging, making them a practical choice for a wider range of consumers. 

Moreover, PHEVs can play a crucial role in the integration of renewable energy into the 

transportation sector. Their ability to charge during off-peak hours and respond to price signals 

from the grid allows for optimized energy usage. This not only supports grid stability but also 

contributes to lower electricity costs for consumers, particularly when paired with distributed 

generation systems. As cities and countries strive to meet ambitious emissions reduction targets 

and improve air quality, PHEVs stand out as a viable transitional technology. Their design and 

operational flexibility position them as an essential component of a sustainable transportation 

ecosystem, bridging the gap between traditional fuel sources and the future of fully electrified 

transportation. PHEVs are significant in the effort to reduce transportation-related emissions. 

Utilizing both electric and conventional powertrains provides a versatile solution that can lead 

to substantial environmental benefits while addressing consumer concerns about range and 

charging infrastructure. The integration of PHEVs with distributed generation further amplifies 

these benefits, fostering a cleaner, more sustainable energy landscape. 

 

1.2 Overview of distributed generation and its role in energy systems 

Distributed generation (DG) refers to the production of electricity from decentralized energy 

sources located close to the point of consumption rather than from large, centralized power 

plants. This approach includes a variety of technologies and sources, such as solar photovoltaic 

(PV) systems, wind turbines, combined heat and power (CHP) systems, biomass generators, 

and small-scale hydroelectric plants. As energy demands evolve and the need for sustainable 

practices increases, DG has emerged as a crucial component of modern energy systems. 

 

1.2.1 Features of Distributed Generation 

Distributed Generation (DG) offers several key features that contribute to a more efficient and 

resilient energy system. One of the primary advantages is its proximity to load; DG installations 

are often located close to the end-users they serve, which reduces transmission losses and 

improves the reliability of the power supply. This proximity also enables faster response times 

to changes in energy demand. Another important feature is the diversity of energy sources that 

DG encompasses. It includes both renewable and non-renewable sources, with a strong emphasis 

on renewable technologies. This variety enhances the resilience and adaptability of the energy 

system, making it less dependent on fossil fuels. 
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Additionally, DG systems are modular and scalable, meaning they can be deployed in smaller, 

incremental units that can be expanded as demand grows or as technology evolves. This 

flexibility is especially valuable when integrating new technologies into existing infrastructure. 

Finally, grid independence is another key feature, as DG can provide energy security and 

resilience, particularly in remote areas or during grid outages. Microgrids, which are localized 

energy systems that can operate autonomously, exemplify how DG enhances energy reliability 

and offers a more secure energy future. 

 

1.2.2 Role in Energy Systems 

Distributed Generation (DG) offers several benefits that contribute to a more sustainable, 

reliable, and efficient energy system. One of the key advantages is its role in enhancing energy 

security. By diversifying energy sources and reducing dependence on centralized power plants, 

DG strengthens the energy supply, mitigating the risks associated with fuel supply disruptions 

and improving grid stability. DG also plays a crucial role in supporting renewable energy 

integration. It helps facilitate the incorporation of renewable sources into the energy mix by 

generating electricity closer to the point of use, which helps balance supply and demand, 

particularly during peak periods when renewable generation is high. Another significant benefit 

of DG is its ability to reduce transmission losses. Since DG sources are often located near 

consumers, less energy is lost during transmission, leading to increased efficiency. This reduction 

in losses contributes to lower overall energy costs and decreases the environmental impacts 

associated with electricity transmission. DG also empowers consumers by allowing them to 

become active participants in the energy market. Technologies like rooftop solar panels enable 

consumers to generate their electricity, potentially lowering energy bills and enhancing energy 

independence. DG systems also support demand response initiatives, where advanced 

technologies allow for real-time adjustments to energy generation based on demand signals. 

This flexibility helps improve overall grid efficiency and reliability. Lastly, DG has notable 

environmental benefits. By prioritizing renewable energy sources, it reduces greenhouse gas 

emissions. It lowers local air pollutants, which is particularly significant in urban areas, where 

air quality is a pressing public health concern. 

1.3 Research contribution 

This research aims to address the existing gaps by simultaneously analyzing mobility patterns 

achieved through the introduction of a multi-zonal distribution system. Additionally, the 

correlation among the elements of driving patterns is examined. The study investigates the 

optimal placement and utilization of renewable energy sources, followed by the implementation 

of the proposed Two-layer Particle Swarm Optimization (TPSO) algorithm. This approach 

aims to minimize the total operational cost and reduce system losses in less computational time. 

The specific objectives of this research are as follows: 
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1. To propose a simple, non-iterative solution, called the Loss Reduction Index (LRI), for 

optimally selecting locations that minimize system losses when placing units. 

2.  To implement an optimization algorithm to minimize the total operational cost of 

scheduling Plug-in Hybrid Electric Vehicles (PHEVs) at charging stations. 

3.  To analyze the system’s performance by considering variations in PHEV types, the 

percentage of miles driven in all-electric range, travel distances, and customer charging 

preferences. 

4. To optimally place and utilize renewable energy sources for the scheduling of PHEVs. 

 

 

2. Related Work  

Mahmud et al. [19] discuss all of the aspects related to EV charging, energy transfer, and grid 

integration with distributed energy resources in the Internet of Energy (IoE). More recently, 

Das et al. [20] presented an evaluation of how future-connected EVs and autonomous driving 

would affect EV charging and grid integration. Other important EV charging issues are those 

that are related to battery management, as well as battery health and lifetime estimations since 

they are key factors in increasing the battery lifetime. Li et al. [21] review recent advancements 

in Big Data analytics to allow for data-driven battery health estimation. More specifically, they 

classify them in terms of feasibility and cost-effectiveness and discuss their advantages and 

limitations. 

Liu et al. [22] go one step further and propose a machine learning-enabled system that is based 

on Gaussian process regression (GPR) to predict lithium-ion battery ageing. Finally, other 

approaches instead explore advanced fault diagnosis techniques since battery faults can 

potentially cause performance degradation [23]. The authors Huang et al. (2015) assumed a 

distribution network with high penetration of PHEVs. They stated that the PHEV charging 

scheduled during the night results in less operational cost. The results are interesting and show 

different kinds of expected charging schedules. However, scheduling all the PHEVs during the 

night may result in peak load at night. Also, this study focuses on locating the charging 

stations that differ from the locations already assigned to their work. 

Alonso et al. (2014) analyzed the effect of smart charging in the distribution system. The 

authors also analyzed the base case scenario. The smart charging schedule is applied based on 

the genetic algorithm. However, this model does not take electricity prices into account. 

Rahman et al. (2015) to intelligently optimize the charging of plug-in hybrid electric vehicles. 

A game theory analysis was done by Malandrino et al. (2015) to analyze the charging stations 

selected by electric vehicle drivers. Yang et al. (2015) adopted Ant Colony Optimization 

(ACO) to model the load and identify electric vehicle charging stations. However, these 

methods require a large number of iterations to ensure algorithm convergence, which may 

reduce the algorithm’s computational efficiency. Rahman et al. (2015) and hybrid optimization 

methods are increasing in order to optimize dissimilar charging infrastructure parameters. An 

optimization approach defined with the aim of curtailing the cost of charging enhances the 

charging of electric vehicle behaviour. The results show that linear programming is good 

enough to solve the problem of electric vehicle charging optimization. An optimum approach 
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based on Discrete Particle Swarm Optimization (DPSO) to find the appropriate charging and 

discharging times for electric vehicle fleet. Suitable charging infrastructure development and 

management can pledge a larger penetration of PHEV. Thus, from the past literature 

regarding the optimization area, it seems that the application of various optimization methods 

is still in the premature stage. Pallonetto et al. (2016) determine the optimal location of CS 

by taking into account the high penetration of photovoltaic panels. Stochastic loads and 

stochastic generation of the photovoltaic panels are used. The model focuses on minimizing 

the objective function of power loss and voltage deviation. However, the author aims to install 

only one charging station in the distribution network, and the behaviour of drivers is also not 

taken into account. 

3. Types of Vehicles 

In this section, three different types of vehicles are discussed in detail. 

3.1 Conventional Vehicle 

Conventional vehicles typically operate with an efficiency of only 30%, meaning that 70% of 

the energy is lost during the conversion process. However, with the introduction of hybrid 

vehicles, these energy losses have been significantly reduced. 

 
Fig.1 Conventional vehicle block diagram 

3.2 Hybrid Electric Vehicle 

By means of the regenerative braking system, the braking energy is saved in the battery. When 

lower torque or velocity is needed, the excess energy produced by the ICE is stored in the 

battery. In contrast, the additional required energy can be extracted from the battery. This will 

lead to more efficient operation of ICE with reduced emissions. 
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Fig. 2 Block diagram of hybrid vehicle 

3.3 Plug-in Hybrid Electric Vehicles (PHEVs) 

A Plug-in Hybrid Electric Vehicle (PHEV) combines an internal combustion engine with an 

electric drive system. PHEVs are equipped with large-capacity batteries that an external power 

source can charge. An increase in the All-Electric Range (AER) of PHEVs leads to improved 

efficiency. While PHEVs share a similar structure with hybrid electric vehicles, they offer the 

added benefit of grid charging capability. As a result, PHEVs can help reduce emissions in both 

residential and commercial areas. However, major challenges remain, including high fossil fuel 

consumption and the depletion of fossil fuel resources. The transition from fossil fuel-powered 

vehicles to PHEVs is not only beneficial for the automotive sector but also has significant 

implications for the grid sector. 

 

Fig 3 Block diagram Plug-in Hybrid Electric Vehicles 

4. Charging Methods 

The PHEVs can be charged from the electricity grid by plugging into an electrical outlet. A 

suitable infrastructure is essential for introducing any new technology. Fortunately, the existing 

grid infrastructure can be used depending on the charging rate. However, an additional 

investment is probably necessary when fast charging is preferred or when the penetration of 

PHEVs is high. 

 

4.1 Slow Charging 

Slow charging is charging at a lower power rating. The vehicles are connected to the low-voltage 

grid. The slow charging could occur in small or medium enterprises or at the parking lot of 

large companies during the day. The slow charging method comprises three charging levels. A 
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standard outlet has a voltage level of 230 V, a maximum current of 20 A, and a maximum 

output of 4.6 kW. 

  

4.2 Normal Charging 

The electric outlet with a maximum current of 32A, which has a maximum power output of 

7.4kW, is involved in normal charging. Some parking lots are equipped with a phase connection 

with a line voltage of 230 V or 400V. The 230 V connections have a rating of 32A and 6kW, 

and the 400V connection has a rating of 20A and a power output of 13.8 kW. Higher charging 

levels are also possible, and thus, the preference for charging level depends on the customer. 

 

4.3 Fast Charging 

Increasing the power of the charger outlet reduces the charging time. For a battery pack of 15 

kWh in 5 minutes, a charging power of 180 kW is required. Thus, a charging station (CS) of 

15 PHEVs that can be charged in 30 minutes requires a charging rate of 30 kW. Possibly, the 

fast charging stations are connected directly to the medium-voltage level. Furthermore, this 

connection requires large investments and heavy disaster. The main advantage of fast charging 

is that it lowers the range anxiety and the barrier to purchasing a PHEV. With the PHEVs 

with ICE and plugging-in capability, it is possible to drive a longer distance, which makes them 

more attractive. 

5. Proposed Methodology 

The goal of finding the optimal location for DG and CS in the distribution system is 

implemented by using the power loss calculated using the backwards-forward sweep method 

based on optimal load flow. The flow chart is shown in Figure 4. The smart charging strategy 

to minimize the TOC is implemented using the Two-layer Particle Swarm Optimization 

(TPSO). The dominant solution matrix is mapped to the search space. Each PHEV is viewed 

as a dimension in the search space, and the sequence starting point is the coordinates of the 

specific dimension. 

5.1 Two-layer Particle Swarm Optimization (TPSO) 

In terms of problem description, in optimization-based scheduling, it is necessary to take into 

account accurate information about PHEVs, available resources, location of charging station, 

and available battery capacity. This information enables us to determine the required battery 

charge for each period to guarantee the final desired SOC. Due to the network size and huge 

elements, the optimization turns into a large combinational problem with different specifications 

and requirements. This fact makes these two layers of PSO essential. The charging and 

discharging patterns of PHEVs can be classified into different patterns. For example, if a PHEV 

requires 7 hours for charging and 2 hours of discharging, then one possible sequence could be 

“11-1-111111”, and the total possible sequence for a PHEV is C 2 = 36. The thirty-six sequences 

form the feasible solution of a particular PHEV. The search space of the optimization problem 

includes a feasible solution with all possible strategy vectors for each PHEV, and it is very 

large. Thus, adopting random initialization as in standard PSO would fail to find the optimal 

solution. 
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Fig. 4 Flowchart of implementing proposed LRI. 

As frequent switching between the charging and discharging modes greatly affects the battery 

life span, the strategy with minimum switching forms the dominant solution. In the upper layer 

of TPSO, such dominant solutions are extracted from the feasible solution. Thus, in the 

dominant solution matrix, a new Sv vector of each PHEV is created by eliminating the rows in 

a feasible solution that involves frequent switching. Based on this dominant solution, the 

proposed TPSO algorithm finds the optimal charging sequence in the lower layer. 

The computational procedure of the TPSO algorithm is elaborated as follows 
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step 1. Initialize all the particles in the search space. The position and velocity of the particles 

are set randomly within the dominant search space. 

step 2. Evaluate the fitness of each particle with respect to the objective function. 

step 3. If it is the better solution for this particle, then store its position as Pbest for this specific 

particle. Then, update the velocity and position and compute the fitness value. If it is 

better than the current Pbest, store its position as a new particle unchanged. Pbest   

position; otherwise, keep the original 

step 4. Check the fitness value of each particle. If it is the best solution of all the particles, then 

store its position as the Gbest position. 

step 5. If the stopping criterion is satisfied, then go to step 6; otherwise, go to step 2. 

step 6. Output the optimal solution. 

6. Result and Discussion  

The first test system under study is the IEEE 33-bus radial distribution network, which consists 

of thirty-three buses with a total active load of 3715 kW and a reactive load of 2300 kVAR. 

The second test system is the IEEE 69-bus radial distribution feeder, which includes one main 

branch and seven laterals. This system has a total active load of 3801.9 kW and a reactive load 

of 2694.1 kVAR. In the baseline scenario, it is assumed that there are no Plug-in Hybrid Electric 

Vehicles (PHEVs) or Distributed Generation (DG) units in the system. The power loss and 

voltage profile values obtained in the base case represent the system’s conditions before adding 

any units to the IEEE 33-bus and IEEE 69-bus distribution systems. This base case scenario is 

then compared with the system after adding the new units. For both test systems, the analysis 

includes power loss, voltage profile, energy cost, and peak-to-average energy ratios. The key 

difference between the two systems is that the first test system is used to analyze PHEVs with 

the same battery capacity. In contrast, the second system analyzes PHEVs with batteries of 

different capacities. 

 
Fig. 5 Multi-zone 33-bus distribution system 

6.1 IEEE 33-bus radial distribution system 

The proposed multi-zone 33-bus radial distribution system is shown in Figure 5. Each node is 

considered to be a customer node point. From Figure 5.5, it can be observed that the 

distribution network consists of three zones: A, B, and C respectively. The optimal location for 

adding the DG and CS units is evaluated using the proposed LRI calculation. 
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6.1.1 Power loss reduction in 33-bus microgrid system 

Selecting a suitable location for integrating DG and CS units is of utmost importance. With 

the proposed approach, the LRI is calculated using equation (5.9). The LRI value of each load 

bus for selecting a suitable location for the CS and DG unit is shown in Table 1. 

Table 1 LRI for placing the CS and DG units. 

Bus No. LRI Rank 
Location 

Identification 
Bus No. LRI Rank 

Location 

Identification 

2 0.0054 1 CS – Zone A 18 0.324 32 DG –Zone C 

3 0.0321 6 - 19 0.0072 2 - 

4 0.0474 8 - 20 0.0224 3 - 

5 0.0631 10 - 21 0.0262 4 CS –Zone B 

6 0.0984 12 DG –Zone A 22 0.032 5 - 

7 0.1042 14 - 23 0.0411 7 - 

8 0.1477 17 - 24 0.0586 9 - 

9 0.1722 20 - 25 0.0711 11 - 

10 0.1973 24 DG –Zone B 26 0.1034 13 - 

11 0.2018 25 - 27 0.1101 15 - 

12 0.2101 26 - 28 0.1359 16 - 

13 0.244 27 - 29 0.1558 18 - 

14 0.257 28 - 30 0.1673 16 CS – Zone C 

15 0.2693 29 - 31 0.187 21 - 

16 0.2841 30 - 32 0.1926 22 - 

17 0.3103 31 - 33 0.1972 23 - 

As loss reduction is one of the most broadly accepted indexes in power systems, it is involved 

in evaluating the suitable location. The minimum value of LRI shows the suitable location for 

placement. A DG and a CS are located in each zone, as shown in Figure 6. The optimal location 

of DGs and CSs in each zone is evaluated, and the results are tabulated as shown in Table 2. 

From Table 2, it can be observed that the base case network loss is 210.9991 kW, whereas the 

loss increases to 257.1981 kW with the addition of CS; this negatively affects the performance 

of the system. Upon installing DG units of suitable size, the network loss is considerably reduced 

by 54.04%, though CS persists in the same location as earlier. This shows that integrating both 

the DGs and CSs in each zone improves the system’s performance. 

6.1.2 Peak to average energy ratio (PAR) evaluation in 33-bus microgrid system 

The load curve is flattened to the maximum extent as the Distributed Generations (DGs) 

contribute to both the system and vehicular loads. The optimally scheduled power curves, 

showing the contributions of wind, solar, and fuel cell energy in zones A, B, and C, respectively, 

are illustrated separately in Figures 6(a), 6(b), and 6(c). By calculating the peak and average 

vehicular and system load, the PAR is derived. To better see its significant impact, the PAR 

in the DG integrated system is compared with the one without it. It is shown in Table 5.4 and 

compared with the Ant Colony Optimization (ACO) algorithm in the existing literature. 
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Table 2 Power loss with suitable location of DG and CS 

Parameters Zone A Zone B Zone C 

DG type Wind (AC 

output) 

Solar (DC output) Fuel cell (DC 

output) 

DGs’ capacity range 

(kW) 

200 – 1000 200 – 1000 1– 300 

Location @6 @10 @18 

CS type Level 2: AC 

charging 

Level 3: DC 

charging 

Level 3: DC 

charging 

CSs’ capacity range 

(kW) 

200 – 1000 200 – 1000 200 – 1000 

Location @2 @21 @30 

Power loss (kW)  

Loss reduction 

Base case: 210.9991 w/o DG and w/ CS: 118.8308 w/ DG 

and CS: 257.1981 54.04 % 

 

 

 

 
Figure 6 Contribution of DG in energy exchange (a) Zone A, (b) Zone B and (c) Zone C 

Table 3 PAR minimization in 33-bus multi-zone 

 Scenario 1 Scenario 2 

 TPSO PSO ACO* TPSO PSO ACO* 
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PAR 1.9859 1.9928 1.9962 0.6837 0.6837 0.9683 

Convergence iteration 43 47 39 40 43 38 

Computational time 10.79 10.76 14.79 9.83 10.67 13.43 

Table 3 depicts that an integrated DG source minimizes the peak load of the multi-zone 

distribution system. The maximum DG power is allowed in scenario two; consequently, the 

total power demand is greatly decreased, resulting in PAR minimization. 

7. Conclusion 

This research investigates the optimal integration of renewable energy in charging Plug-in 

Hybrid Electric Vehicles (PHEVs). Due to the increased power demand for charging PHEVs at 

charging stations (CS), the network experiences higher power losses compared to the base case. 

This indicates that adding a CS unit to an existing distribution system increases system losses. 

However, by incorporating suitable Distributed Generation (DG) units along with the CS unit, 

it is possible to reduce the losses in the network. The proposed approach is also shown to 

improve the voltage profile, enhancing the stability of the system to a considerable extent. The 

smart scheduling scheme, using the Two-layer Particle Swarm Optimization (TPSO) algorithm, 

demonstrates powerful optimization capabilities by achieving the minimum Total Operational 

Cost (TOC) while ensuring the satisfaction of new constraints such as battery capacity, mobility 

patterns, and charging infrastructure. The Peak-to-Average Ratio (PAR) values are 

significantly reduced with the integration of DG sources, showcasing the effectiveness of the 

smart scheduling scheme in utilizing renewable energy sources efficiently. The study also 

investigates the optimal location selection for CS and DG units using the Loss Reduction Index 

(LRI). The integration of renewable sources in the distribution system leads to a reduction in 

both total operational costs and system power loss. Therefore, it is recommended that renewable 

energy sources for PHEV scheduling be integrated into charging stations. Future work could 

explore the integration of renewable energy forecasting techniques, such as solar irradiance and 

wind speed forecasting, into the first layer of PSO. Accurate forecasting would enable better 

planning for renewable energy dispatch. Additionally, future studies could focus on large-scale 

simulations involving thousands of PHEVs and various renewable energy sources to assess the 

scalability and efficiency of the two-layer PSO approach in real-world conditions. 
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