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Abstract 
Query structuring systems are keyword search systems 

recently used for the effective retrieval of XML documents. 

Existing systems fail to put keyword query ambiguity prob-

lems into consideration during query pre-processing and 

return irrelevant predicate nodes. As a result, these sys-

tems return irrelevant results. In this research, an XML 

keyword search system, called N-gram based XML query 

structuring system (NBXQSS) is developed to improve the 

performance of keyword searches. The NBXQSS uses an N-

gram Based Query Segmentation (NBQS) method which 

interprets a user query as a list of semantic units to help 

resolve ambiguity. The system also introduces an improved 

predicate identification algorithm (IPIA) to return rele-

vant predicates. The IPIA uses a proposed function to com-

pute the query term proximity and ordering. The effective-

ness of the NBXQS is demonstrated through experimental 

performance study on some real-world XML documents. 

The results show that the developed system performs bet-

ter compared to the existing system in terms of precision. 

Introduction 
 XML (Extensible Markup Language) refers to a stand-

ard for representing; publishing and exchanging data 

over the Internet, several documents are now represent-

ed and stored in XML format on the Web. These docu-

ments contain textual information and logical structures 

to highlight the underlying semantic. However, content-

oriented XML retrieval becomes a challenge due to diffi-

culty in selecting highly relevant elements that satisfy 

user’s information needs. Thus, there is a need for a user-

friendly and effective method for searching XML data 

over the Internet.  These documents are searched using 

queries formed using traditional query languages such as 

XPath or XQuery (Nguyen & Cao (2012). Queries com-

posed using query languages are called structured que-

ries. Although searching using structured queries is ef-

fective, using query languages to express queries proves 

to be difficult for most users since this requires learning 

a query language and knowledge of the underlying data 

schema. On the other hand, the success of Web search 

engines has made many users be familiar with keyword 

searches and therefore prefer to use a keyword search 

query interface to search XML data. Keyword queries are 

inherently ambiguous, and it is difficult for users to state 

their intentions clearly. The ambiguity of the keyword 

query may cause a large number of results to be returned 

and thus makes keyword query not effective [10]. There-

fore, search systems that enhanced the effectiveness of 

keyword queries are highly needed. 

 The question now is in order to improve the effective-

ness of keyword queries, can we develop systems that 

allow users to enter keyword queries and relegate the 

task of generating the structured queries to the systems? 

The answer is yes, and such systems are currently called 

Query Structuring Systems [1, 2, 6, 8, 910, 12].  Query 

structuring systems convert a user keyword query into a 

set of structured queries and select the best-structured 

query or queries that match the given input query. These 

systems focus on how to represent user queries, identify 

user search intention, and ranking algorithms to improve 

keyword search. However, with respect to query repre-

sentation, existing systems firstly return irrelevant in-

terpretation of user query because the systems fail to put 

query keyword ambiguities into consideration. Specifi-

cally, none of the systems consider the following ambigu-

ities: (I) a query term can appear as the text values of 

different XML nodes and having different semantics (ii) a 

query term can appear as both a tag name and as part of 

the text content of some node.  

 In addition, existing systems [2, 6] also return inap-

propriate predicate nodes due to the use of term fre-

quency (tf) only to compute the predicate node but ig-

nores query term proximity.    

 In this paper, an N-gram Based XML Query Structuring 

System (NBXQS) is developed to return the relevant in-

terpretation of user query and predicate nodes. The 

NBXQSS uses N-gram Based Query Segmentation (NBQS) 

method to break user queries into segments in order to 

return the best user query interpretation. Also, the sys-
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tem employs an improved predicate identification algo-

rithm (IPIA) that uses the output of NBQS as input and a 

proposed formula to infer relevant predicate nodes.  

 

 The rest of the paper is organized as follows: Section 2 

describes the related works. Section 3 describes the pro-

posed Query Term Proximity and ordering. Section 4 

describes the proposed N-gram Based Query segmenta-

tion (NBQS). Section 5 presents the proposed Improved 

Predicate Identification Algorithm (IPIA). While Section 6 

presents the proposed NBXQSS system. Section 7 pre-

sents a performance evaluation. Finally, Section 8 con-

cludes the study. 

Related Works 
 In this section, related works on Query structuring sys-

tems are presented. Several systems proposed to im-

prove the effectiveness of keyword search are reviewed 

by highlighting the operational procedure of each system 

as well as its pros and cons. These systems are as fol-

lows: 

 

The study by [8] designed an XML keyword search ap-

proach which they called XBridge. This system derives 

the semantic of keyword query and then generates a set 

of structured queries that are evaluated using an XML 

database. However, the ranking function of this system is 

based on tf-idf which ignores the semantics of XML data 

and the query. The function favors only fragments with 

high term frequencies. 

  

The study [9], proposed a concept called XIO (smallest 

meaningful XML twig) and an algorithm (XIOF) to com-

pute a set of XIO from a keyword user query. This algo-

rithm improves both precision and recalls for a keyword 

search. However, the result returned is not in any partic-

ular order because it has no ranking function. 

 

The study by [10], designed an XML keyword search ap-

proach that derives keyword query and generates a set 

of structured queries by analyzing a given keyword que-

ry and schemas of XML data sources. An algorithm for 

computing the ranking score of structured queries was 

also developed. Although the approach returns a ranked 

list of results, it also returns irrelevant results with high-

er term frequency due to the use of traditional tf-idf 

ranking function. 

 

The study by [6] proposed a method called StruX to de-

rive structured XML queries automatically from key-

word-based queries. In the method, users are to specify a   

schema-independent and unstructured keyword-based 

query that generates a top-k ranking of schema-aware 

queries that are based on a target XML database. It also 

splits a user query keyword into a sequence of segments, 

where each segment consists of a query keyword or a 

sequence of keywords. However, the system ignores the 

fact that a query keyword can appear in different parts of 

an XML document having different semantics because it 

considers a query just as a sequence of keywords not as a 

sequence of semantically related terms. In addition, it 

also returns irrelevant results due to failure to consider 

the weight of a query term based on its position and que-

ry terms proximity. 

  

The study [2] developed an Effective Keyword Query 

Structuring using NER for the XML retrieval system (we 

call it EKQS) which uses the EBQS method to interpret 

the user input query as a list of keywords and named 

entities. The method uses the NER tagger [7] to mark a 

sequence of query keywords that describes an entity and 

treat the sequence as a unit. However, the method cannot 

identify more than one named-entity of the same type 

that appears as a contiguous subsequence of query key-

words because it marks all the sequence of keywords 

describing an entity as one entity. However, the method 

returns irrelevant interpretations of the user query. Con-

sequently, the system returns irrelevant results to users. 

To date, none of these systems has proved capable of 

further improving the effectiveness of the systems. The 

NBXQSS system proposed differs from the existing Query 

Structuring Systems because it introduces NBQS and IPIA 

methods to return relevant XML nodes. 

A. Query Term Proximity and Order-

ing (QTPO) 
This section describes the proposed QTPO function, 

which computes query term proximity score, similar to 

the BM25TP model [4]. Recall BM25TP model score que-

ry term proximity score based on an intuition that, in a 

relevant document, query terms appear relatively close 

to each other and not in completely unrelated parts of 

the document. Recall that the BM25TP model works as 

follows. 

 Given a user query              . With every query 

term    the model associates an accumulator           

that accumulates the term’s proximity score within the 
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current document d. For every query term    , the model 

grabs its posting list and computes the distance (number 

of postings) between this posting and the previous post-

ing belonging to the term   . If   ≠   , then increment the 

accumulators for both terms according to the following 

formulas 
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where       and     is the inverse document frequency 

(idf) for query terms tx and ty respectively.       and       

are the position of query term tx and ty in document d 

respectively. The accumulators in Equations (1) and (2) 

will be incremented only if        .   

B. QTPO 
This section illustrates the weakness BM25TP 

and shows how QTPO is derived.  QTPO is based on the 

intuition that a relevant XML element is one that contains 

the query keyword in close proximity and in the same 

order as they appear in the query. First let's illustrate the 

weakness of BM25TP. Substituting       in Equation 

(1), the equation becomes  
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Subtracting Equation (3) from Equation (2), it implies 

that 
22 )()(

,,,, dxdydydx tttt PPPP                          (4) 

Equation (4) means that BM25TP ignores query terms 

ordering. As a result it assigns scores to the documents 

regardless of the query terms ordering and so it cannot 

differentiate between the queries:  Qiuyue Wang XML 

Retrieval  and Wang Qiuyue Retrieval XML. This restricts 

its functions and the restriction is solved using the pro-

posed Equation (5). To address the query terms ordering 

problem in this paper, the proximity of query terms is 

calculated as follows: The function                 of 

Equation (5) is proposed to replace the square 

difference              
   in Equations (1) and (2). 
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where        and        represent  position of term     and 

   in element (e) respectively and  ave is the harmonic 

mean of the two positions, which can be computed using 

the following formula, 
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We set β = 1.1, which is greater than 1 to ensure that 

query term    is clustered around   . The proposed func-

tion ),(
,, eyex tt PPd computes how scattered the terms in a 

query are within an XML leaf element. A small value of 

),(
,, eyex tt PPd , means the query terms are clustered to-

gether, while a large value indicates the query terms are 

widely separated. Therefore, by replacing the square dif-

ference              
   in Equations (1) and (2) by the 

function                , the equations are transformed 

as follows: 
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In this paper, since in XML retrieval the granularity of 

search is XML elements (e), the term proximity score of a 

query term tx is calculated at element (e) level using 

Equation (9).  
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C. N-gram Based Query segmentation 

(NBQS) 
 This section presents NBQS algorithm to return rele-

vant interpretation of user input query. The algorithm 

first assumes that queries consist of phrases or semantic 

units and then re-express these queries as a list of se-

mantic units. It uses the Web as a corpus of potential 

query phrases because the Google n-gram corpus con-

tains the largest Web phrases [13]. The corpus consists 

of 1-gram, 2-gram, …, 5-gram phrases from the 2006 
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Google index along with number of times each n-gram 

appears.  Based on this number of times the algorithm 

scores each query’s segmentation and outputs the “best” 

segmentation. The NBQS algorithm is shown in Algo-

rithm 1 and works as follows: 

 

Given a user query q consisting of n keywords, 

where                , at line 2, the algorithm call the 

genSegmtations() method, which generates a set of valid 

     segmentations from q. For example, the algorithm 

returns the second column of Table 1, for query q = {xml 

retrieval Mounia Lalma}. A Segmentation S consists of a 

list of segments and is valid if the concatenation of its 

segments equals q. Each segmentation S is assigned a 

score. Then, at line 3 all valid segmentations are listed, 

and for each segmentation S, line 4 computes a score for 

S according to Equation (10): 

)()(
2,

scountSSscore

s

sSs







                 (10) 

The multiplier |S||s|  rewards long segments compared to 

shorter ones in order to compensate the power law dis-

tribution of occurrence frequencies on the Web. For ex-

ample, "Fox Development" has a much larger count than 

"Fox Development Team Microsoft", so that the multipli-

er helps us to avoid segmentations like "Fox Develop-

ment", "Microsoft". The scores are shown in column 3 of 

Table 1. Line 5 stores the segmentation S and its score in 

a list called tblSgmts. At line 6, the algorithm iterates 

back to line 3 and takes the next segmentation S and re-

peats the process as done with the previous segmenta-

tion. When all the segmentations are considered, the al-

gorithm transfers control to line 7. Line 7 calls the 

find_Max() method which returns the segmentation with 

highest score. Line 8 returns the segmentation. The com-

puted segmentation would be used as input to IPIA. For 

example, for the query Q={xml retrieval Mounia Lalma}, 

the method generates eight segmentations after line 6 

shown in Table 1. The third column of Table 1 represents 

the scores computed at line 4 using Equation (10). 

Therefore, the algorithm returns ‘xml retrieval/Mounia 

Lalmas’ as the best segmentation on lines 7-8.      

Table 1: Segmentations and scores 

SN Segmentation Score 

1 xml / retrieval / Mounia / 

Lalmas     

0.00000 

2 xml retrieval Mounia / Lalmas      0.000002 

3 xml retrieval / Mounia Lalmas        3.104 

4 xml /retrieval Mounia Lalmas            00097 

5 xml  retrieval Mounia Lalmas       0 

6 xml /retrieval Mounia / Lalmas    0.000004 

7 xml  retrieval/ Mounia / Lalmas    2.3808 

8 xml /retrieval/ Mounia Lalmas       0.7232 

D. Improved Predicate Identifica-

tion Algorithm (IPIA) 
 This section presents IPIA which resolves the problem 

of irrelevant predicates. It accepts list of segments as 

input. This algorithm is based on the intuition that rele-

vant predicate is a predicate node that contains at least 

one keyword in a segment and contain the segment key-

words in close proximity. Consequently, we firstly, pro-

pose Equation (11) to compute relevant predicates for a 

given segment.  

))(1(log),( ,

,





sk

knkee ftaccsnscore                  (11) 

Where n is a predicate node, s is a segment, and k is a 

keyword in s. The )(
,

ke tacc  is the proximity score of tx 

in element e (see Equation (9)) and is the query term 

proximity score of term k in element n of segment s in 

node n. In the summation, the second multiplier ( knf , ) in 

Equation (11) computes XML nodes containing at least 

one of the keyword in s. While the first multiplier re-

wards keywords in the segment that appear in close 

proximity and in the order in node n. Then, IPIA uses the 

proposed Equation (11) to compute all relevant predi-

cates.  It accepts the best segments (segmentation) com-

puted by the NBQS as input and outputs a list of predi-

cates (predList) as output. IPIA is shown as Algorithm 2. 

The algorithm retrieves all the nodes in the XML data-

base at line 1, and for each node, its relevant segments 

are computed from the given list of segments at lines 2-8. 



International Journal of Advanced Computer Technology (IJACT) 
ISSN: 2319-7900                                                                         Volume VIII, Issue IV, August 2019 

5 

Line 8 selects the best segments while lines 9-10 first 

check if the list of segments is non-empty then it gener-

ates a list of related node/segment pairs called predi-

cates. This process continues until all the nodes are con-

sidered. Finally, line 12 selects the best predicates and 

returns the list of best predicates as the answer.  

 
 

Example: Demonstrating how algorithm 2 works using 

Figure 1. Figure 1(a) shows s1, s2, and s3 as a list of three 

segments (segments) passed as input to IPIA. Line1 call 

getAllNodes() method which retrieves all the nodes in 

the XML document. Suppose the method returns two 

nodes (author and title) shown in Figure 1(b).  

 

 
Figure 1: Three segments and two nodes 

 

Line 2 iterates through all the nodes in allnodes and for 

each node n, a list of relevant segments (Rsegments) is 

computed from segments. Therefore on line 2, the IPIA 

takes node n = SigmodRecord/issues 

/issue/articles/article /authors/author, and then tries to 

find all relevant segments for n as follows: Line 3 sets 

rsegments to empty, meaning that relevant segments are 

not yet found. At line 4, IPIA considers segment s1and 

line 5 computes a score for s1 with respect to n. Lines 6 

updates the Rsegments if the score is greater than zero 

on line 6, otherwise the algorithm iterates back to line 4. 

At line 7, IPIA iterates back to line 4 and considers 

s2.Then, line 5 computes a score for s2 with respect to n. 

Lines 6 updates Rsegments if the score is greater than 

zero on line 6, otherwise the algorithm iterates back to 

line 4. Again, at line 7, IPIA iterates back to line 4 and 

considers s3. Then on line 5 computes a score for s3 with 

respect to n. Lines 6 updates Rsegments if the score is 

greater than zero, otherwise the algorithm iterates back 

to line 4. Again, at executing line 7, IPIA iterates back to 

line 4. This time no segment is found and therefore the 

algorithm goes to line 8. At line 8 the algorithm to com-

pute best segments for the underlying node n. It then 

stores n and its segments in predList as predicate at line 

10.  At line 11, the algorithm iterates back to line 2 to 

consider the next node. At line 2, n = 

SigmodRecord/issues/issue/articles/article /title. It 

then uses line 3-8 to compute its relevant segments as 

done for the previous node.The new node n and its seg-

ments are stored in predList as predicate at line 10. The 

process is repeated until all the nodes are considered in 

which case the algorithm move to line 12. At line 12 the 

algorithm selects the best set of predicates. Line 13 re-

turns these predicates. Consequently, lines 5-6 compute 

a score for n and s2 pair. At line 6, if the score is non-

negative, it mean we have found a relevant segment (s2) 

for node n, and s2 as well as its score are added to the list 

of relevant segments (Rsegments) for node n. This leaves 

Rsegments = {‘John Michael': 2.66789}. This time, no 

segment is found. At this point, all candidate relevant 

segments for node n are computed and line 8 selects best 

segments. Since s2 is the only segment, line 9 returns s2 

as the best segments. Lines 12-13 return a list of n-

segment pairs called predicates. Line 12 stores each 

predicate in the list of predicates (predList). This leaves 

predList = {SigmodRecord/issues/issue/articles/article 

/authors/author = 'John Michael': 2.66789},  as a list of 

one predicate with the number 2.66789 as its corre-

sponding segment score. At line 11, the algorithm iter-

ates back to line 2 to consider the next node. At line 2, 

n=sigmodRecord/issues/issue/articles/article/title. Line 

3 sets Rsegments to empty. Then, IPIA tries to find all 

relevant segments for the new node n.  Line 4 takes seg-

ment s1 and tries to find if it is relevant to n on line 5.  

Since on line 5 Type(n) = Other, then s1 is related to n if 

all the keywords in s1 are of type 'Other'. All the key-

words in s1 are of type 'Other', which implies that n and 

s1 are semantically related. Consequently, lines 6-7 com-

pute a score for n and s1 pair. On line 6, if the score is 

non-negative, s1 as well as its score are added to the list 

of relevant segments (Rsegments) for node n. This leaves 

Rsegments={'xml retrieval': 3.0025}.  Now, Rsegments is 

a list of one segment 'xml retrieval' with its score 

'3.0025'.  Then IPIA iterates back again to line 4 and con-
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siders s2. Line 5 discovers that none of the keywords in 

s2 is of type 'Other', so n and s2 are not semantically re-

lated. Thus, all the keywords in s2 are removed, which 

leads to s2 = null.  Since s2 = null, IPIA ignores s2 and 

iterates back to line 4 to take the next segment s3. The 

line 5 pre-processes s3 by removing all keywords in s3 

that are not of type 'Other'. This caused the last two key-

words in s3 to be removed which changes s3 to s3 = re-

trieval. Since the new s3 is not empty, lines 6-7 compute 

a score for n and the new segment s3. At line 6, if the 

score is non-negative, the new s3 as well as its score are 

added to the list of relevant segments (Rsegments) for 

node n. This generates Rsegments = { 'xml retrieval': 

3.00125, 'retrieval': 2.0504}.  Now Rsegments is a list of 

two segments 'xml retrieval’ and 'retrieval'. The algo-

rithm iterates back again to line 4 and found no segment, 

which means all candidate relevant segments for node n 

are computed.  IPIA goes to line 9 to find the best seg-

ment out of the two relevant segments in Rsegments. To 

do that Line 8 calls the selectBestSegment() method 

which finds best segment. The method returns s1 = ‘xml 

retrieval': 3.0025 as the best segment because it has the 

highest score. Lines 10-11 add this segment together 

with n as predicate in predList. This leaves us with 

predList={SigmodRecord/issues/issue/articles/article 

/authors/author = 'John Michael': 2.66789; 

SigmodRecord/issues/issue/articles/article/title = 'xml 

retrieval': 3.0025}, as a list of two predicates, where the 

first predicate is the one obtained in the first iteration. 

From line 11 the IPIA iterates back to line 2 to consider 

the next node. However, based on Figure 1(b), all the 

nodes are considered and therefore it goes to line 12. 

Line 12 calls the genbestPredicates() method which finds 

best predicates in predList. Both predicates are selected 

since both are of different type and both contain data of 

different type and thus line 12 returns 

predList={SigmodRecord/issues/issue/articles/article/a

uthors/author = 'John Michael': 2.66789; 

SigmodRecord/issues/issue/articles/article/title = 'xml 

retrieval': 3.0025}. The following example demonstrates 

the effect of the proposed   
  in Equation (1).  

Example: Consider a  query  '17 2 Tandem Performance 

Research Group' issued on Sigmod data, and the query is  

intended to search for an issue whose volume '17'  and  

number  '2' and one of the authors is  'Tandem Perfor-

mance Research Group'.   

 

Case 1: using Equation (2) without   
  

Figure 2 shows four predicates each with its scores re-

turned by PIA algorithm. 

 
Figure 2:  Predicates and their scores 

 

In this case, the third predicates got the highest score 

because there are more /article/title nodes in the 

Sigmod XML that contain the segment keywords than the 

/authors/author nodes.  But the user search intention 

does not include /article/title node. The keywords in the 

/article/title node i.e. 'Performance Research Group’ se-

mantically refers to an organization that wrote an article 

and not an article's title. The user refers to those key-

words in the '/authors/author' node. Meaning that the 

‘/authors/author' node is supposed to have the highest 

score not /article/title node. Therefore, an irrelevant 

predicate is returned because the equation fails to con-

sider the semantics of the keywords (i.e. ambiguity ii).   

 

Case 2: using Equation (2) with   
  

Figure 3 shows four predicates each with its scores re-

turned by IPIA algorithm.  

 
Figure 3: Improved predicates and their scores 

               

In this case, the /authors/author node now has the high-

est score when compared with /article/title node. This is 

because the segment keywords 'Tandem Performance 

Research Group’ appear closer to each other in the 

/authors/author node while the segment keyword 

'Performance Research Group' appear scattered in the 

/article/title node. Therefore, the /authors/author node 

got the highest score of   
 , which helps to improve its 

score in  Figure 2. 

 

E. N-gram Based XML Query Structur-

ing System (NBXQSS) 
This section presents the proposed NBXQSS 

which returns relevant XML elements. The system is 

shown in Figure 4. It consists of a pipeline of other algo-

rithms namely: N-gram based Segmentation (NBQS) al-

gorithm, Predicate Identification Algorithm (IPIA), Com-
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pute Return Node Algorithm (CRNA), Query Formulation 

Algorithm (QRYFv). The pseudo code of the NBXQSS is 

shown in Algorithm 3.   

 

 

 
Figure 4: The NBQXSS System 

The algorithm consists of three stages: Search intention 

identification, query formation and query processing. 

Firstly, lines 1-3 present search intention identification, 

which for a given user query finds the predicates and the 

return node. Secondly, line 4 presents the Query for-

mation, which uses the QRYFv algorithm to generate a 

set of structured queries and returns a ranked list of 

structured queries. Finally, line 5 evaluates the queries 

on a target XML database. The CRNA and QRYFv are 

adopted from our previous work in Roko et al (2015). 

We refer our esteem readers to the article. The CRNA 

computes the returned node which is the target XML 

node the user is searching for. The QRYF receives a set of 

predicate nodes and return nodes. It then converts the 

set of predicate nodes and returned nodes to a set of 

structured queries in XQuery syntax. The structured que-

ries are used for the retrieval of results. 

 

F. Experiments 

 The experiments are conducted using real dataset and 

query sets to compare the performance of the proposed 

NBXQSS and EKQS. 

 

Experimental Setups 
 The two systems are implemented in Java and run on a 

3.2.0 GHz an Intel (R) Core (I3) machine with 4GB of 

RAM running Windows 10 Professional 64 bit operating 

system.  MySQL database is used  to store the proposed 

index while Berkeley DB for XML (Brian, 2006) used to 

store and query the XML documents. 

Dataset 
Sigmod and IMDB document collections are used as the 

datasets. Since the NBXQSS returns entity nodes from the 

datasets as the nodes users are searching node, the IMDB 

dataset is pre-processed before indexing. This is because 

in the IMDB dataset, every document root, such as <per-

son> or <movie> is intuitively an entity node. The pro-

posed system considers a root element as not suitable to 

be an entity node. Consequently, to return a <person> as 

an entity node, we automatically create a dummy root 

node <persons> to contain all the <person> elements. An 

entity node consists of a set of related leaf nodes. For 

example, for the IMDB XML dataset there are 42 leaf 

nodes. According to (Cohen, S., Mamou, J., Kanza, Y., & 

Sagiv, 2003), the smaller the number of leaf nodes in an 

entity node the closer the leaf nodes and therefore more 

meaningful. So, in this paper, five (5) leaf nodes are se-

lected out of the 42 leaf nodes based on a survey involv-

ing twenty postgraduate students. In the survey, each 

respondent is given the list of the 42 leaf elements and 

asked to select the ones often used to describe a movie or 

an actor.  . 

 

Query and judgments 
 To get the queries and relevant judgments, 25 keyword 

queries are randomly selected as done in XIOF (X. Li et 

al., 2010) and a survey involving thirty people is also 

conducted. In the survey, the people were asked to write 

the target XML predicate nodes and XML return nodes 

that would be return by each query. The survey result is 

summarized and the 10 queries where more that 70% of 

the participants agree on the same returned nodes are 

selected. Tables 3 and 4 shows the queries selected on 

columns 2 and their corresponding returned nodes (i.e. 

relevant judgments) on columns 3 for IMDB and Sigmod 
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datasets. Also, each keyword query is manually changed 

to its corresponding XQuery expression and the new 

query is used to retrieve relevant XML fragments. These 

retrieved relevant fragments are used to judge the quali-

ty of the XML elements return the proposed system. This 

paper assumes that a query keyword has at least one 

occurrence in the XML data being searched. Some of the-

se queries contain ambiguities; query QI5 contain ambi-

guity (ii); Queries QS5 and QS6 contain ambiguity (I). All 

the datasets are indexed as in (Roko A., et al., 2018). 

 

Results and Discussions 
The section describes experimental results. It 

first presents the returned nodes obtained by the EKQS 

and the proposed NBXQSS. Then, it also presents the 

quality of the XML elements returned by the NBXQSS and 

the EKQS systems.  

Quality of the returned nodes  
Tables 2 and 3 also show the query evaluation results on 

IMDB and Sigmod datasets, respectively. In the Tables, 

the second columns represents the queries,  the third 

columns show the target returned nodes (i.e. the relevant 

judgments),  the fourth columns show the returned 

nodes obtained by the proposed NBXQSS, the fifth col-

umns show the return nodes computed by the EKQS. The 

Tables show that the proposed NBXQSS outperforms the 

EKQS in terms of the quality of target returned nodes. 

 

Table 3: Query evaluation result on IMDB dataset 

Qid Query Re-

turned 

node 

NBXQSS EKQS 

QI1 Chris I Arnett 

Super Fly 

Per-

son 

Person Per-

son 

QI2 murder 

McGill Bruce 

Movie Movie Movie 

QI3 Sheltered Life 

2008 

Movie Movie Movie 

QI4 countdown 

Lewinsky 

Monica 

Movie Movie Movie 

QI5 Garafano 

Michelle di-

rector 

Movie Movie direc-

tor 

QI6 Planet Re-

venge Evil 

Ninja 

Movie Movie Movie 

QI7 Morris 

Haviland ac-

tor 

Movie Movie Movie 

QI8 Zion Brother 

accident 

 Movie Movie Movie 

QI9 Proudly fami-

ly 

Movie Movie Movie 

QI1

0 

Briggs Johnny 

Martin Joe 

Movie Movie Movie 

Table 1: Query evaluation result on Sigmoid dataset 

QId Query Returned 

node 

NBXQSS EKQS 

QS1 semantic da-

tabase Victor 

Vianu                

article article article 

QS2 David DeWitt article article author 

QS3 multimedia 

object  man-

ager   

article article articles 

QS4 2 client server issue issue issue 

QS5 Fox Develop-

ment Team 

Microsoft                    

article article authors 

QS6 17 2 Tandem 

Performance 

Group 

issue issue issue 

QS7 24 2 Georges 

Gardarin              

issue issue issue 

QS8 Performance 

evaluation 

article article article 

QS9 Server  article article articles 

QS10 databases 

Won Kim Wil-

lis Luther 

article article article 

 

Figure 4 and 5 show the precision comparisons of the 

IMDB and the Sigmod datasets, for the proposed NBXQSS 

and EKQS, respectively. The Figures show that the pro-

posed NBXQSS achieves superior search performance 

than EKQS system because of the following reasons: 

During query processing, the proposed NBXQSS estab-

lishes relationships between the keywords to convert the 

query into a list of semantic units using its query seg-

mentation method. After this, it then finds predicate 

nodes containing the semantic units via its IPIA algo-

rithm. IPIA includes a formula, which ensures that a 

score is assigned to each predicate node such that predi-

cate nodes containing the semantic units as they appear 
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in the query are rewarded with higher scores and are 

selected as the best predicate nodes. Figures 5 and 6 il-

lustrate the precision comparison of the proposed 

NBXQSS and EKQS using Sigmod and IMDB datasets, re-

spectively.  The Figure shows that the proposed NBXQSS 

achieves better search performance than the EKQS.  Fig-

ure 5 shows that the NBXQSS is able to infer about 100% 

of the true return nodes while the EKQS only 90% on 

IMDB dataset.  While Figure 6 demonstrates that the 

NBXQSS infers about 100% of the return nodes and the 

EKQS about 70%, on Sigmod dataset.  The proposed 

NBXQSS achieves superior search performance than the 

EKQS system because of the following reasons.   

The reasons for poor performance of EKQS are:  (1) EKQS 

used heuristics to compute entity nodes present in the 

data. However, some of the entity nodes returned by 

EKQS are grouping nodes which are not entity nodes 

[11]. For example, for the queries QS3 and QS5, the EKQS 

returns articles and authors nodes as the answer respec-

tively. However, the two nodes are grouping nodes and 

hence are not entity nodes. While in the case of query 

QI5, EKQS returns “Director” node because it consider 

the whole query words as one entity. 

 

 
Figure 5: Precision comparison for IMDB. 

 

 
Figure 6: Precision comparison for Sigmod 

G. Conclusion 
In this paper, an NBXQSS system has been pro-

posed for keyword search over XML document to im-

prove the effectiveness of the returned results. The sys-

tem employs NBQS method to resolve query keyword 

ambiguity. It also introduces an IPIA to return relevant 

predicates which helps to return informative entity 

nodes. Extensive experiments have been conducted to 

evaluate the performance of the proposed NBXQSS com-

pared to the existing system. The results demonstrated 

that the NBXQSS out performs the compared EKQS in 

terms of the quality of the desired returned nodes. 
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