
International Journal of Advanced Computer Technology (IJACT)
ISSN: 2319-7900 Volume VIII, Issue IV, August 2019

1

N-GRAM BASED QUERY STRUCTURING SYSTEM FOR EFFECTIVE XML
RETRIEVAL

Roko Abubakar, Department of Mathematics, Faculty of Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

Asma’u Shehu, Department of Mathematics, Faculty of Science, Usmanu Danfodiyo University, Sokoto, Nigeria;

Aminu Muhammad Bui, Department of Mathematics, Faculty of Science, Usmanu Danfodiyo University, Sokoto, Nigeria

Ibrahim Saidu, Department of ICT, Faculty of Engineering & Environmental Studies, Usmanu Danfodiyo University, Sokoto, Nigeria.

Abstract
Query structuring systems are keyword search systems

recently used for the effective retrieval of XML documents.

Existing systems fail to put keyword query ambiguity prob-

lems into consideration during query pre-processing and

return irrelevant predicate nodes. As a result, these sys-

tems return irrelevant results. In this research, an XML

keyword search system, called N-gram based XML query

structuring system (NBXQSS) is developed to improve the

performance of keyword searches. The NBXQSS uses an N-

gram Based Query Segmentation (NBQS) method which

interprets a user query as a list of semantic units to help

resolve ambiguity. The system also introduces an improved

predicate identification algorithm (IPIA) to return rele-

vant predicates. The IPIA uses a proposed function to com-

pute the query term proximity and ordering. The effective-

ness of the NBXQS is demonstrated through experimental

performance study on some real-world XML documents.

The results show that the developed system performs bet-

ter compared to the existing system in terms of precision.

Introduction
 XML (Extensible Markup Language) refers to a stand-

ard for representing; publishing and exchanging data

over the Internet, several documents are now represent-

ed and stored in XML format on the Web. These docu-

ments contain textual information and logical structures

to highlight the underlying semantic. However, content-

oriented XML retrieval becomes a challenge due to diffi-

culty in selecting highly relevant elements that satisfy

user’s information needs. Thus, there is a need for a user-

friendly and effective method for searching XML data

over the Internet. These documents are searched using

queries formed using traditional query languages such as

XPath or XQuery (Nguyen & Cao (2012). Queries com-

posed using query languages are called structured que-

ries. Although searching using structured queries is ef-

fective, using query languages to express queries proves

to be difficult for most users since this requires learning

a query language and knowledge of the underlying data

schema. On the other hand, the success of Web search

engines has made many users be familiar with keyword

searches and therefore prefer to use a keyword search

query interface to search XML data. Keyword queries are

inherently ambiguous, and it is difficult for users to state

their intentions clearly. The ambiguity of the keyword

query may cause a large number of results to be returned

and thus makes keyword query not effective [10]. There-

fore, search systems that enhanced the effectiveness of

keyword queries are highly needed.

 The question now is in order to improve the effective-

ness of keyword queries, can we develop systems that

allow users to enter keyword queries and relegate the

task of generating the structured queries to the systems?

The answer is yes, and such systems are currently called

Query Structuring Systems [1, 2, 6, 8, 910, 12]. Query

structuring systems convert a user keyword query into a

set of structured queries and select the best-structured

query or queries that match the given input query. These

systems focus on how to represent user queries, identify

user search intention, and ranking algorithms to improve

keyword search. However, with respect to query repre-

sentation, existing systems firstly return irrelevant in-

terpretation of user query because the systems fail to put

query keyword ambiguities into consideration. Specifi-

cally, none of the systems consider the following ambigu-

ities: (I) a query term can appear as the text values of

different XML nodes and having different semantics (ii) a

query term can appear as both a tag name and as part of

the text content of some node.

 In addition, existing systems [2, 6] also return inap-

propriate predicate nodes due to the use of term fre-

quency (tf) only to compute the predicate node but ig-

nores query term proximity.

 In this paper, an N-gram Based XML Query Structuring

System (NBXQS) is developed to return the relevant in-

terpretation of user query and predicate nodes. The

NBXQSS uses N-gram Based Query Segmentation (NBQS)

method to break user queries into segments in order to

return the best user query interpretation. Also, the sys-

International Journal of Advanced Computer Technology (IJACT)
ISSN: 2319-7900 Volume VIII, Issue IV, August 2019

2

tem employs an improved predicate identification algo-

rithm (IPIA) that uses the output of NBQS as input and a

proposed formula to infer relevant predicate nodes.

 The rest of the paper is organized as follows: Section 2

describes the related works. Section 3 describes the pro-

posed Query Term Proximity and ordering. Section 4

describes the proposed N-gram Based Query segmenta-

tion (NBQS). Section 5 presents the proposed Improved

Predicate Identification Algorithm (IPIA). While Section 6

presents the proposed NBXQSS system. Section 7 pre-

sents a performance evaluation. Finally, Section 8 con-

cludes the study.

Related Works
 In this section, related works on Query structuring sys-

tems are presented. Several systems proposed to im-

prove the effectiveness of keyword search are reviewed

by highlighting the operational procedure of each system

as well as its pros and cons. These systems are as fol-

lows:

The study by [8] designed an XML keyword search ap-

proach which they called XBridge. This system derives

the semantic of keyword query and then generates a set

of structured queries that are evaluated using an XML

database. However, the ranking function of this system is

based on tf-idf which ignores the semantics of XML data

and the query. The function favors only fragments with

high term frequencies.

The study [9], proposed a concept called XIO (smallest

meaningful XML twig) and an algorithm (XIOF) to com-

pute a set of XIO from a keyword user query. This algo-

rithm improves both precision and recalls for a keyword

search. However, the result returned is not in any partic-

ular order because it has no ranking function.

The study by [10], designed an XML keyword search ap-

proach that derives keyword query and generates a set

of structured queries by analyzing a given keyword que-

ry and schemas of XML data sources. An algorithm for

computing the ranking score of structured queries was

also developed. Although the approach returns a ranked

list of results, it also returns irrelevant results with high-

er term frequency due to the use of traditional tf-idf

ranking function.

The study by [6] proposed a method called StruX to de-

rive structured XML queries automatically from key-

word-based queries. In the method, users are to specify a

schema-independent and unstructured keyword-based

query that generates a top-k ranking of schema-aware

queries that are based on a target XML database. It also

splits a user query keyword into a sequence of segments,

where each segment consists of a query keyword or a

sequence of keywords. However, the system ignores the

fact that a query keyword can appear in different parts of

an XML document having different semantics because it

considers a query just as a sequence of keywords not as a

sequence of semantically related terms. In addition, it

also returns irrelevant results due to failure to consider

the weight of a query term based on its position and que-

ry terms proximity.

The study [2] developed an Effective Keyword Query

Structuring using NER for the XML retrieval system (we

call it EKQS) which uses the EBQS method to interpret

the user input query as a list of keywords and named

entities. The method uses the NER tagger [7] to mark a

sequence of query keywords that describes an entity and

treat the sequence as a unit. However, the method cannot

identify more than one named-entity of the same type

that appears as a contiguous subsequence of query key-

words because it marks all the sequence of keywords

describing an entity as one entity. However, the method

returns irrelevant interpretations of the user query. Con-

sequently, the system returns irrelevant results to users.

To date, none of these systems has proved capable of

further improving the effectiveness of the systems. The

NBXQSS system proposed differs from the existing Query

Structuring Systems because it introduces NBQS and IPIA

methods to return relevant XML nodes.

A. Query Term Proximity and Order-

ing (QTPO)
This section describes the proposed QTPO function,

which computes query term proximity score, similar to

the BM25TP model [4]. Recall BM25TP model score que-

ry term proximity score based on an intuition that, in a

relevant document, query terms appear relatively close

to each other and not in completely unrelated parts of

the document. Recall that the BM25TP model works as

follows.

 Given a user query . With every query

term the model associates an accumulator

that accumulates the term’s proximity score within the

International Journal of Advanced Computer Technology (IJACT)
ISSN: 2319-7900 Volume VIII, Issue IV, August 2019

3

current document d. For every query term , the model

grabs its posting list and computes the distance (number

of postings) between this posting and the previous post-

ing belonging to the term . If ≠ , then increment the

accumulators for both terms according to the following

formulas

2)(

1
)()(

,, dydx

x

tt

txdxd
PP

wtacctacc


 (1)

2)(

1
)()(

,, dxdy

y

tt

tydyd
PP

wtacctacc


 (2)

where and is the inverse document frequency

(idf) for query terms tx and ty respectively. and

are the position of query term tx and ty in document d

respectively. The accumulators in Equations (1) and (2)

will be incremented only if .

B. QTPO
This section illustrates the weakness BM25TP

and shows how QTPO is derived. QTPO is based on the

intuition that a relevant XML element is one that contains

the query keyword in close proximity and in the same

order as they appear in the query. First let's illustrate the

weakness of BM25TP. Substituting in Equation

(1), the equation becomes

2)(

1
)()(

,, dydx

y

tt

tydyd
PP

wtacctacc


 (3)

Subtracting Equation (3) from Equation (2), it implies

that
22)()(

,,,, dxdydydx tttt PPPP  (4)

Equation (4) means that BM25TP ignores query terms

ordering. As a result it assigns scores to the documents

regardless of the query terms ordering and so it cannot

differentiate between the queries: Qiuyue Wang XML

Retrieval and Wang Qiuyue Retrieval XML. This restricts

its functions and the restriction is solved using the pro-

posed Equation (5). To address the query terms ordering

problem in this paper, the proximity of query terms is

calculated as follows: The function of

Equation (5) is proposed to replace the square

difference
 in Equations (1) and (2).

2

)()(
),(

22

,,

,,

avePaveP
PPd

eyex

eyex

tt

tt


 (5)

where and represent position of term and

 in element (e) respectively and ave is the harmonic

mean of the two positions, which can be computed using

the following formula,

eyex

eyex

tt

tt

PP

PP
ave

,,

,,

2

2)1(










(6)

We set β = 1.1, which is greater than 1 to ensure that

query term is clustered around . The proposed func-

tion),(
,, eyex tt PPd computes how scattered the terms in a

query are within an XML leaf element. A small value of

),(
,, eyex tt PPd , means the query terms are clustered to-

gether, while a large value indicates the query terms are

widely separated. Therefore, by replacing the square dif-

ference
 in Equations (1) and (2) by the

function , the equations are transformed

as follows:

),(

1
)()(

,,

,,

eyex

x

tt

txdxd

PPd
wtacctacc  (7)

),(

1
)()(

,,

,,

eyex

y

tt

tydyd

PPd
wtacctacc  (8)

In this paper, since in XML retrieval the granularity of

search is XML elements (e), the term proximity score of a

query term tx is calculated at element (e) level using

Equation (9).












otherwisetacc

etttt
PPd

Wtacc
tac

xe

yxyx

tt

txe

xe eyex

x

),(

,,,,
),(

1
)(

)(
,

,

,

,,
 (9)

C. N-gram Based Query segmentation

(NBQS)
 This section presents NBQS algorithm to return rele-

vant interpretation of user input query. The algorithm

first assumes that queries consist of phrases or semantic

units and then re-express these queries as a list of se-

mantic units. It uses the Web as a corpus of potential

query phrases because the Google n-gram corpus con-

tains the largest Web phrases [13]. The corpus consists

of 1-gram, 2-gram, …, 5-gram phrases from the 2006

International Journal of Advanced Computer Technology (IJACT)
ISSN: 2319-7900 Volume VIII, Issue IV, August 2019

4

Google index along with number of times each n-gram

appears. Based on this number of times the algorithm

scores each query’s segmentation and outputs the “best”

segmentation. The NBQS algorithm is shown in Algo-

rithm 1 and works as follows:

Given a user query q consisting of n keywords,

where , at line 2, the algorithm call the

genSegmtations() method, which generates a set of valid

 segmentations from q. For example, the algorithm

returns the second column of Table 1, for query q = {xml

retrieval Mounia Lalma}. A Segmentation S consists of a

list of segments and is valid if the concatenation of its

segments equals q. Each segmentation S is assigned a

score. Then, at line 3 all valid segmentations are listed,

and for each segmentation S, line 4 computes a score for

S according to Equation (10):

)()(
2,

scountSSscore

s

sSs







 (10)

The multiplier |S||s| rewards long segments compared to

shorter ones in order to compensate the power law dis-

tribution of occurrence frequencies on the Web. For ex-

ample, "Fox Development" has a much larger count than

"Fox Development Team Microsoft", so that the multipli-

er helps us to avoid segmentations like "Fox Develop-

ment", "Microsoft". The scores are shown in column 3 of

Table 1. Line 5 stores the segmentation S and its score in

a list called tblSgmts. At line 6, the algorithm iterates

back to line 3 and takes the next segmentation S and re-

peats the process as done with the previous segmenta-

tion. When all the segmentations are considered, the al-

gorithm transfers control to line 7. Line 7 calls the

find_Max() method which returns the segmentation with

highest score. Line 8 returns the segmentation. The com-

puted segmentation would be used as input to IPIA. For

example, for the query Q={xml retrieval Mounia Lalma},

the method generates eight segmentations after line 6

shown in Table 1. The third column of Table 1 represents

the scores computed at line 4 using Equation (10).

Therefore, the algorithm returns ‘xml retrieval/Mounia

Lalmas’ as the best segmentation on lines 7-8.

Table 1: Segmentations and scores

SN Segmentation Score

1 xml / retrieval / Mounia /

Lalmas

0.00000

2 xml retrieval Mounia / Lalmas 0.000002

3 xml retrieval / Mounia Lalmas 3.104

4 xml /retrieval Mounia Lalmas 00097

5 xml retrieval Mounia Lalmas 0

6 xml /retrieval Mounia / Lalmas 0.000004

7 xml retrieval/ Mounia / Lalmas 2.3808

8 xml /retrieval/ Mounia Lalmas 0.7232

D. Improved Predicate Identifica-

tion Algorithm (IPIA)
 This section presents IPIA which resolves the problem

of irrelevant predicates. It accepts list of segments as

input. This algorithm is based on the intuition that rele-

vant predicate is a predicate node that contains at least

one keyword in a segment and contain the segment key-

words in close proximity. Consequently, we firstly, pro-

pose Equation (11) to compute relevant predicates for a

given segment.

))(1(log),(,

,





sk

knkee ftaccsnscore (11)

Where n is a predicate node, s is a segment, and k is a

keyword in s. The)(
,

ke tacc is the proximity score of tx

in element e (see Equation (9)) and is the query term

proximity score of term k in element n of segment s in

node n. In the summation, the second multiplier (knf ,) in

Equation (11) computes XML nodes containing at least

one of the keyword in s. While the first multiplier re-

wards keywords in the segment that appear in close

proximity and in the order in node n. Then, IPIA uses the

proposed Equation (11) to compute all relevant predi-

cates. It accepts the best segments (segmentation) com-

puted by the NBQS as input and outputs a list of predi-

cates (predList) as output. IPIA is shown as Algorithm 2.

The algorithm retrieves all the nodes in the XML data-

base at line 1, and for each node, its relevant segments

are computed from the given list of segments at lines 2-8.

International Journal of Advanced Computer Technology (IJACT)
ISSN: 2319-7900 Volume VIII, Issue IV, August 2019

5

Line 8 selects the best segments while lines 9-10 first

check if the list of segments is non-empty then it gener-

ates a list of related node/segment pairs called predi-

cates. This process continues until all the nodes are con-

sidered. Finally, line 12 selects the best predicates and

returns the list of best predicates as the answer.

Example: Demonstrating how algorithm 2 works using

Figure 1. Figure 1(a) shows s1, s2, and s3 as a list of three

segments (segments) passed as input to IPIA. Line1 call

getAllNodes() method which retrieves all the nodes in

the XML document. Suppose the method returns two

nodes (author and title) shown in Figure 1(b).

Figure 1: Three segments and two nodes

Line 2 iterates through all the nodes in allnodes and for

each node n, a list of relevant segments (Rsegments) is

computed from segments. Therefore on line 2, the IPIA

takes node n = SigmodRecord/issues

/issue/articles/article /authors/author, and then tries to

find all relevant segments for n as follows: Line 3 sets

rsegments to empty, meaning that relevant segments are

not yet found. At line 4, IPIA considers segment s1and

line 5 computes a score for s1 with respect to n. Lines 6

updates the Rsegments if the score is greater than zero

on line 6, otherwise the algorithm iterates back to line 4.

At line 7, IPIA iterates back to line 4 and considers

s2.Then, line 5 computes a score for s2 with respect to n.

Lines 6 updates Rsegments if the score is greater than

zero on line 6, otherwise the algorithm iterates back to

line 4. Again, at line 7, IPIA iterates back to line 4 and

considers s3. Then on line 5 computes a score for s3 with

respect to n. Lines 6 updates Rsegments if the score is

greater than zero, otherwise the algorithm iterates back

to line 4. Again, at executing line 7, IPIA iterates back to

line 4. This time no segment is found and therefore the

algorithm goes to line 8. At line 8 the algorithm to com-

pute best segments for the underlying node n. It then

stores n and its segments in predList as predicate at line

10. At line 11, the algorithm iterates back to line 2 to

consider the next node. At line 2, n =

SigmodRecord/issues/issue/articles/article /title. It

then uses line 3-8 to compute its relevant segments as

done for the previous node.The new node n and its seg-

ments are stored in predList as predicate at line 10. The

process is repeated until all the nodes are considered in

which case the algorithm move to line 12. At line 12 the

algorithm selects the best set of predicates. Line 13 re-

turns these predicates. Consequently, lines 5-6 compute

a score for n and s2 pair. At line 6, if the score is non-

negative, it mean we have found a relevant segment (s2)

for node n, and s2 as well as its score are added to the list

of relevant segments (Rsegments) for node n. This leaves

Rsegments = {‘John Michael': 2.66789}. This time, no

segment is found. At this point, all candidate relevant

segments for node n are computed and line 8 selects best

segments. Since s2 is the only segment, line 9 returns s2

as the best segments. Lines 12-13 return a list of n-

segment pairs called predicates. Line 12 stores each

predicate in the list of predicates (predList). This leaves

predList = {SigmodRecord/issues/issue/articles/article

/authors/author = 'John Michael': 2.66789}, as a list of

one predicate with the number 2.66789 as its corre-

sponding segment score. At line 11, the algorithm iter-

ates back to line 2 to consider the next node. At line 2,

n=sigmodRecord/issues/issue/articles/article/title. Line

3 sets Rsegments to empty. Then, IPIA tries to find all

relevant segments for the new node n. Line 4 takes seg-

ment s1 and tries to find if it is relevant to n on line 5.

Since on line 5 Type(n) = Other, then s1 is related to n if

all the keywords in s1 are of type 'Other'. All the key-

words in s1 are of type 'Other', which implies that n and

s1 are semantically related. Consequently, lines 6-7 com-

pute a score for n and s1 pair. On line 6, if the score is

non-negative, s1 as well as its score are added to the list

of relevant segments (Rsegments) for node n. This leaves

Rsegments={'xml retrieval': 3.0025}. Now, Rsegments is

a list of one segment 'xml retrieval' with its score

'3.0025'. Then IPIA iterates back again to line 4 and con-

International Journal of Advanced Computer Technology (IJACT)
ISSN: 2319-7900 Volume VIII, Issue IV, August 2019

6

siders s2. Line 5 discovers that none of the keywords in

s2 is of type 'Other', so n and s2 are not semantically re-

lated. Thus, all the keywords in s2 are removed, which

leads to s2 = null. Since s2 = null, IPIA ignores s2 and

iterates back to line 4 to take the next segment s3. The

line 5 pre-processes s3 by removing all keywords in s3

that are not of type 'Other'. This caused the last two key-

words in s3 to be removed which changes s3 to s3 = re-

trieval. Since the new s3 is not empty, lines 6-7 compute

a score for n and the new segment s3. At line 6, if the

score is non-negative, the new s3 as well as its score are

added to the list of relevant segments (Rsegments) for

node n. This generates Rsegments = { 'xml retrieval':

3.00125, 'retrieval': 2.0504}. Now Rsegments is a list of

two segments 'xml retrieval’ and 'retrieval'. The algo-

rithm iterates back again to line 4 and found no segment,

which means all candidate relevant segments for node n

are computed. IPIA goes to line 9 to find the best seg-

ment out of the two relevant segments in Rsegments. To

do that Line 8 calls the selectBestSegment() method

which finds best segment. The method returns s1 = ‘xml

retrieval': 3.0025 as the best segment because it has the

highest score. Lines 10-11 add this segment together

with n as predicate in predList. This leaves us with

predList={SigmodRecord/issues/issue/articles/article

/authors/author = 'John Michael': 2.66789;

SigmodRecord/issues/issue/articles/article/title = 'xml

retrieval': 3.0025}, as a list of two predicates, where the

first predicate is the one obtained in the first iteration.

From line 11 the IPIA iterates back to line 2 to consider

the next node. However, based on Figure 1(b), all the

nodes are considered and therefore it goes to line 12.

Line 12 calls the genbestPredicates() method which finds

best predicates in predList. Both predicates are selected

since both are of different type and both contain data of

different type and thus line 12 returns

predList={SigmodRecord/issues/issue/articles/article/a

uthors/author = 'John Michael': 2.66789;

SigmodRecord/issues/issue/articles/article/title = 'xml

retrieval': 3.0025}. The following example demonstrates

the effect of the proposed
 in Equation (1).

Example: Consider a query '17 2 Tandem Performance

Research Group' issued on Sigmod data, and the query is

intended to search for an issue whose volume '17' and

number '2' and one of the authors is 'Tandem Perfor-

mance Research Group'.

Case 1: using Equation (2) without

Figure 2 shows four predicates each with its scores re-

turned by PIA algorithm.

Figure 2: Predicates and their scores

In this case, the third predicates got the highest score

because there are more /article/title nodes in the

Sigmod XML that contain the segment keywords than the

/authors/author nodes. But the user search intention

does not include /article/title node. The keywords in the

/article/title node i.e. 'Performance Research Group’ se-

mantically refers to an organization that wrote an article

and not an article's title. The user refers to those key-

words in the '/authors/author' node. Meaning that the

‘/authors/author' node is supposed to have the highest

score not /article/title node. Therefore, an irrelevant

predicate is returned because the equation fails to con-

sider the semantics of the keywords (i.e. ambiguity ii).

Case 2: using Equation (2) with

Figure 3 shows four predicates each with its scores re-

turned by IPIA algorithm.

Figure 3: Improved predicates and their scores

In this case, the /authors/author node now has the high-

est score when compared with /article/title node. This is

because the segment keywords 'Tandem Performance

Research Group’ appear closer to each other in the

/authors/author node while the segment keyword

'Performance Research Group' appear scattered in the

/article/title node. Therefore, the /authors/author node

got the highest score of
 , which helps to improve its

score in Figure 2.

E. N-gram Based XML Query Structur-

ing System (NBXQSS)
This section presents the proposed NBXQSS

which returns relevant XML elements. The system is

shown in Figure 4. It consists of a pipeline of other algo-

rithms namely: N-gram based Segmentation (NBQS) al-

gorithm, Predicate Identification Algorithm (IPIA), Com-

International Journal of Advanced Computer Technology (IJACT)
ISSN: 2319-7900 Volume VIII, Issue IV, August 2019

7

pute Return Node Algorithm (CRNA), Query Formulation

Algorithm (QRYFv). The pseudo code of the NBXQSS is

shown in Algorithm 3.

Figure 4: The NBQXSS System

The algorithm consists of three stages: Search intention

identification, query formation and query processing.

Firstly, lines 1-3 present search intention identification,

which for a given user query finds the predicates and the

return node. Secondly, line 4 presents the Query for-

mation, which uses the QRYFv algorithm to generate a

set of structured queries and returns a ranked list of

structured queries. Finally, line 5 evaluates the queries

on a target XML database. The CRNA and QRYFv are

adopted from our previous work in Roko et al (2015).

We refer our esteem readers to the article. The CRNA

computes the returned node which is the target XML

node the user is searching for. The QRYF receives a set of

predicate nodes and return nodes. It then converts the

set of predicate nodes and returned nodes to a set of

structured queries in XQuery syntax. The structured que-

ries are used for the retrieval of results.

F. Experiments

 The experiments are conducted using real dataset and

query sets to compare the performance of the proposed

NBXQSS and EKQS.

Experimental Setups
 The two systems are implemented in Java and run on a

3.2.0 GHz an Intel (R) Core (I3) machine with 4GB of

RAM running Windows 10 Professional 64 bit operating

system. MySQL database is used to store the proposed

index while Berkeley DB for XML (Brian, 2006) used to

store and query the XML documents.

Dataset
Sigmod and IMDB document collections are used as the

datasets. Since the NBXQSS returns entity nodes from the

datasets as the nodes users are searching node, the IMDB

dataset is pre-processed before indexing. This is because

in the IMDB dataset, every document root, such as <per-

son> or <movie> is intuitively an entity node. The pro-

posed system considers a root element as not suitable to

be an entity node. Consequently, to return a <person> as

an entity node, we automatically create a dummy root

node <persons> to contain all the <person> elements. An

entity node consists of a set of related leaf nodes. For

example, for the IMDB XML dataset there are 42 leaf

nodes. According to (Cohen, S., Mamou, J., Kanza, Y., &

Sagiv, 2003), the smaller the number of leaf nodes in an

entity node the closer the leaf nodes and therefore more

meaningful. So, in this paper, five (5) leaf nodes are se-

lected out of the 42 leaf nodes based on a survey involv-

ing twenty postgraduate students. In the survey, each

respondent is given the list of the 42 leaf elements and

asked to select the ones often used to describe a movie or

an actor. .

Query and judgments
 To get the queries and relevant judgments, 25 keyword

queries are randomly selected as done in XIOF (X. Li et

al., 2010) and a survey involving thirty people is also

conducted. In the survey, the people were asked to write

the target XML predicate nodes and XML return nodes

that would be return by each query. The survey result is

summarized and the 10 queries where more that 70% of

the participants agree on the same returned nodes are

selected. Tables 3 and 4 shows the queries selected on

columns 2 and their corresponding returned nodes (i.e.

relevant judgments) on columns 3 for IMDB and Sigmod

International Journal of Advanced Computer Technology (IJACT)
ISSN: 2319-7900 Volume VIII, Issue IV, August 2019

8

datasets. Also, each keyword query is manually changed

to its corresponding XQuery expression and the new

query is used to retrieve relevant XML fragments. These

retrieved relevant fragments are used to judge the quali-

ty of the XML elements return the proposed system. This

paper assumes that a query keyword has at least one

occurrence in the XML data being searched. Some of the-

se queries contain ambiguities; query QI5 contain ambi-

guity (ii); Queries QS5 and QS6 contain ambiguity (I). All

the datasets are indexed as in (Roko A., et al., 2018).

Results and Discussions
The section describes experimental results. It

first presents the returned nodes obtained by the EKQS

and the proposed NBXQSS. Then, it also presents the

quality of the XML elements returned by the NBXQSS and

the EKQS systems.

Quality of the returned nodes
Tables 2 and 3 also show the query evaluation results on

IMDB and Sigmod datasets, respectively. In the Tables,

the second columns represents the queries, the third

columns show the target returned nodes (i.e. the relevant

judgments), the fourth columns show the returned

nodes obtained by the proposed NBXQSS, the fifth col-

umns show the return nodes computed by the EKQS. The

Tables show that the proposed NBXQSS outperforms the

EKQS in terms of the quality of target returned nodes.

Table 3: Query evaluation result on IMDB dataset

Qid Query Re-

turned

node

NBXQSS EKQS

QI1 Chris I Arnett

Super Fly

Per-

son

Person Per-

son

QI2 murder

McGill Bruce

Movie Movie Movie

QI3 Sheltered Life

2008

Movie Movie Movie

QI4 countdown

Lewinsky

Monica

Movie Movie Movie

QI5 Garafano

Michelle di-

rector

Movie Movie direc-

tor

QI6 Planet Re-

venge Evil

Ninja

Movie Movie Movie

QI7 Morris

Haviland ac-

tor

Movie Movie Movie

QI8 Zion Brother

accident

 Movie Movie Movie

QI9 Proudly fami-

ly

Movie Movie Movie

QI1

0

Briggs Johnny

Martin Joe

Movie Movie Movie

Table 1: Query evaluation result on Sigmoid dataset

QId Query Returned

node

NBXQSS EKQS

QS1 semantic da-

tabase Victor

Vianu

article article article

QS2 David DeWitt article article author

QS3 multimedia

object man-

ager

article article articles

QS4 2 client server issue issue issue

QS5 Fox Develop-

ment Team

Microsoft

article article authors

QS6 17 2 Tandem

Performance

Group

issue issue issue

QS7 24 2 Georges

Gardarin

issue issue issue

QS8 Performance

evaluation

article article article

QS9 Server article article articles

QS10 databases

Won Kim Wil-

lis Luther

article article article

Figure 4 and 5 show the precision comparisons of the

IMDB and the Sigmod datasets, for the proposed NBXQSS

and EKQS, respectively. The Figures show that the pro-

posed NBXQSS achieves superior search performance

than EKQS system because of the following reasons:

During query processing, the proposed NBXQSS estab-

lishes relationships between the keywords to convert the

query into a list of semantic units using its query seg-

mentation method. After this, it then finds predicate

nodes containing the semantic units via its IPIA algo-

rithm. IPIA includes a formula, which ensures that a

score is assigned to each predicate node such that predi-

cate nodes containing the semantic units as they appear

International Journal of Advanced Computer Technology (IJACT)
ISSN: 2319-7900 Volume VIII, Issue IV, August 2019

9

in the query are rewarded with higher scores and are

selected as the best predicate nodes. Figures 5 and 6 il-

lustrate the precision comparison of the proposed

NBXQSS and EKQS using Sigmod and IMDB datasets, re-

spectively. The Figure shows that the proposed NBXQSS

achieves better search performance than the EKQS. Fig-

ure 5 shows that the NBXQSS is able to infer about 100%

of the true return nodes while the EKQS only 90% on

IMDB dataset. While Figure 6 demonstrates that the

NBXQSS infers about 100% of the return nodes and the

EKQS about 70%, on Sigmod dataset. The proposed

NBXQSS achieves superior search performance than the

EKQS system because of the following reasons.

The reasons for poor performance of EKQS are: (1) EKQS

used heuristics to compute entity nodes present in the

data. However, some of the entity nodes returned by

EKQS are grouping nodes which are not entity nodes

[11]. For example, for the queries QS3 and QS5, the EKQS

returns articles and authors nodes as the answer respec-

tively. However, the two nodes are grouping nodes and

hence are not entity nodes. While in the case of query

QI5, EKQS returns “Director” node because it consider

the whole query words as one entity.

Figure 5: Precision comparison for IMDB.

Figure 6: Precision comparison for Sigmod

G. Conclusion
In this paper, an NBXQSS system has been pro-

posed for keyword search over XML document to im-

prove the effectiveness of the returned results. The sys-

tem employs NBQS method to resolve query keyword

ambiguity. It also introduces an IPIA to return relevant

predicates which helps to return informative entity

nodes. Extensive experiments have been conducted to

evaluate the performance of the proposed NBXQSS com-

pared to the existing system. The results demonstrated

that the NBXQSS out performs the compared EKQS in

terms of the quality of the desired returned nodes.

References
[1] Abubakar Roko, et al, “Effective Keyword query

structuring using NER for XML retrieval”. Interna-

tional Journal of Web Information Systems. Vol 11,

PP 33-53 .,(2015). ISSN:1744-0084.

DOI:10.1108/IJWIS-06-2014-0022.

[2] Abubakar Roko , et al, "Named Entity Based

Ranking with Term Proximity for XML Retrieval”,

International Journal of Information Retrieval

Research. Vol 8. Issue 2. .,(2018). SSN: 2155-

6377DOI: 10.4018/IJIRR.2018040104.

[3] Akritidis, L., Katsaros, D., & Bozanis, P. (2012).

Improved retrieval effectiveness by efficient

combination of term proximity and zone scoring: A

simulation-based evaluation. Simulation Modelling

Practice and Theory, 22, 74–91. http://doi.org/

10.1016/j.simpat.2011.12.002.

[4] Büttcher, S., Clarke, C. L. a., & Lushman, B. (2006).

Term proximity scoring for ad-hoc retrieval on very

large text collections. In Proceedings of the 29th

annual international ACM SIGIR conference on

Research and development in information retrieval -

SIGIR ’06 (p. 621). http://doi.org/10.1145

/1148170.1148285.

[5] Brian, D., “The Definitive Guide to Berkeley DB XML”.

(N. Sixsmith, Ed.). New York, New York, USA:

Apress. (2006)

[6] Da C. Hummel, F., Da Silva, A. S., Moro, M. M., &

Laender, A. H. F. , “Automatically generating

structured queries in XML keyword search”. In

Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics)

(Vol. 6932 LNCS, pp. 194–205) 2011.

http://doi.org/ 10.1007/978 -3-642.

[7] Jenny R. F., et al , “Incorporating Non-local Infor-

International Journal of Advanced Computer Technology (IJACT)
ISSN: 2319-7900 Volume VIII, Issue IV, August 2019

10

mation into Information Extraction Systems by

Gibbs Sampling”. Proceedings of the 43nd Annual

Meeting of the Association for Computation Lin-

guistics (ACL 2005), pp. 370.

http://nlp.stanford.edu /papers/gibbscrf3.pdf.

[8] Li, J., Liu, C., Zhou, R., & Ning, B. (2009). Processing

XML Keyword Search by Constructing Effective

Structured Queries. Advances in Data and Web

Management.

[9] Li, X., Li, Z., Chen, Q., & Li, N. (2011). XIOTR :A Terse

Ranking of XIO for XML Keyword Search. Journal of

Software, 6(1), 156–163. http://doi.org/10.4304/

jsw.6.1.156-163.

[10] Li, X., Li, Z., Wang, P., & Chen, Q. (2010). XIOF:

Finding XIO for Effective Keyword Search in XML

Documents. In 2010 2nd International Workshop on

Intelligent Systems and Applications (pp. 1–6). Ieee.

http://doi.org/10.1109/IWISA.2010.5473249.

[11] Nguyen, K., & Cao, J. (2010). Exploit Keyword Query

Semantics and Structure of Data for Effective XML

Keyword Search. In Proceedings of the Twenty-First

Australasian Conference on Database Technologies

(Vol. 104, pp. 133–140).

[12] Petkova, D., Croft, W. B., & Diao, Y. (2009). Refining

Keyword Queries for XML Retrieval by Combining

Content and Structure. Advances in Information

Retrieval.

[13] Lin, Y., Michel, J.-B., Aiden, E. L., Orwant, J.,

Brockman, W., & Petrov, S. (2012). Syntactic

annotations for the Google Books Ngram Corpus.

Proceedings of the ACL 2012 System Demonstrations,

(July), 169–174. Retrieved from

http://www.aclweb.org/anthology/P12-3029.

 Biographies
 ABUBAKR ROKO received his B.Sc. degree (1991). in

Mathematics from the Usmanu Danfodiyo University,

Sokoto, Nigeria, in 1991, the M.Ss. degree in Computer

Science from the Abubakar Tabawa Balewa University

Bauchi, Nigeria in 1995, and the Ph.D. degree in Comput-

er Science from University Putra, Malaysia in 2016. Cur-

rently, He is a senior Lecturer in department of Mathe-

matics Usmanu Danfodiyo University. His teaching and

research areas include Algorithm analysis, Information

Retrieval/Recommender Systems, and Sentiment Analy-

sis Dr. Roko Abubakar may be reached at:

abroko@yahoo.com, roko.abubakar@udusok.edu.ng.

