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Abstract 
 

Many real-world systems such as communication systems, 

transportation systems, and logistics/distribution systems that 

play important roles in our modern society can be regarded as 

probabilistic networks whose transmission time and trans-

mission cost are independent, finite and multi-valued random 

variables. Such a network is indeed a multistate system with 

multistate components and so its reliability for level (d,c), 

i.e., the probability that the shortest transmission time from a 

specified source node to another specified sink node is less 

than or equal to d and the total transmission cost is no more 

than c, can be computed in terms of minimal cut vectors to 

level (d,c) (named (d,c)-MCs here). The main objective of 

this paper is to present a simple algorithm to search for all 

(d,c)-MCs of such a network and then to calculate its reliabil-

ity in terms of such (d,c)-MCs by further applying the state-

space decomposition method. A numerical example is given 

to illustrate the proposed method. 

 

Introduction 
 

System reliability is an important indicator in the plan-

ning, designing, and operation of a real-world system. Tradi-

tionally, it is assumed that the system under study is repre-

sented by a probabilistic graph in a binary-state model, and 

the system operates successfully if there exists one or more 

paths from the source node to the sink node. In such a case, 

reliability is considered as a matter of connectivity only and 

so it does not seem to be reasonable as a model for some 

real-world systems. Many physical systems such as commu-

nication systems, transportation systems and logis-

tics/distribution systems can be regarded as probabilistic 

networks whose transmission time and transmission cost are 

independent, limited, and integer-valued random variables. 

For such a network, it is very practical and desirable to eval-

uate its reliability for level (d,c), i.e., the probability that the 

shortest transmission time from the source node to the sink 

node is less than or equal to d and the total transmission cost 

is no more than c. 

 

In fact, reliability evaluation can be carried out in terms of 

minimal pathsets (MPs) or minimal cutsets (MCs) in the 

binary-state model case, and (d,c)-MCs (i.e., minimal cut 

vectors to level (d,c) [2], lower critical connection vector to 

level (d,c) [3], or upper boundary points of system level (d,c) 

[9]) for each level (d,c) in the multistate model case. The 

probabilistic network with random transmission times and 

transmission costs here can be treated as a multistate system 

of multistate components and so the need of an efficient al-

gorithm to search for all of its (d,c)-MCs arises. The main 

purpose of this article is to present an intuitive algorithm to 

generate all (d,c)-MCs of such a network and then to com-

pute its reliability in terms of such (d,c)-MCs by further ap-

plying the state space decomposition method [3].  

 

Assumptions 
  

A manufacturing system, transportation systems, and lo-

gistics/distribution system can be represented by a probabil-

istic network. Let ),,,( ULANG   be such a network with 

the unique source node s and the unique sink node t, where 

N is the set of nodes, }1|{ niaA i   is the set of arcs, 

),...,,( 21 nlllL   and ),...,,( 21 nuuuU  , where 
il  and 

iu  de-

note the minimum, and maximum transmission time of each 

arc 
ia , respectively. Such a probabilistic network is assumed 

to further satisfy the following assumptions: 

1. Each node is perfectly reliable. Otherwise, the network 

will be enlarged by treating each of such nodes as an arc 

[1]. 

2. The transmission time and transmission cost of each arc 

ia  are integer-valued random variables that takes integer 

values according to a given distribution. 

3. The transmission times and transmission costs of differ-

ent arcs are statistically independent. 

 

Assumption 3 is made just for convenience. If it fails in 

practice, the proposed algorithm to search for all (d,c)-MCs 

is still valid except that the reliability evaluation in terms of 

such (d,c)-MCs should take the joint probability distribu-

tions of all arcs into account. 

 

Let ),...,,( 21 nXXXX   be a system-state vector (i.e., the 

current transmission time of each arc ia  under X  is ix , 

where ix  takes integer values from 
il  to 

iu , and )(XV , the 

shortest transmission time from s to t under X . Such a func-

tion )(XV  plays the role of the so-called structure function 

of a multistate system with hLV )(  and kUV )( . Under 
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the system-state vector ),...,,( 21 nXXXX  , the arc set A has 

the following three important subsets: 

}|{ iiiX uxAaN  , }|{ iiiX uxAaB   and 

)}()(|{ XVeXVAaS iiX   where ),,...,,( 21 iniiie   

with 1ij  if ij   and 0 if ij  . In fact, 

XXXX BSNSA  )\(  is a disjoint union of A under 

X. 

 

A system-state vector X  is said to be a (d,c)-MC if and 

only if (1) its system level is d (i.e., dXV )( ), (2) each arc 

without maximum transmission time under X is sensitive 

(i.e., 
XX SN  ), and (3) the total transmission cost is no 

more than c. If level (d,c) is given, then the probability that 

the shortest transmission time from the source node s to the 

sink node t is less than or equal to d and the total transmis-

sion cost is no more than c, is taken as the system reliability. 

 

Model Building 
 

Suppose that mPPP ,...,, 21  are the collection of all MPs of 

the system. For each jP , the transmission time from the 

source node s to the sink node t is defined as the sum of the 

transmission times of all arcs in it. Hence, 

   i

j

iimj PaxXV }}|{{min)( 1
 is the shortest transmis-

sion time from s to t under X. Because )(XV  is non-

decreasing in each argument under X, the probabilistic net-

work with random transmission times and transmission costs 

can be viewed as a multistate monotone system with the 

structure function )(V  [2]. 

 

A necessary condition for a system vector X to be a (d,c)-

MC is stated in the following theorems. Our algorithm relies 

mainly on such a result. 

 

Theorem 1. If X is a (d,c)-MC, then 

}}|{}{ dPaxPS
i

j

ii

j

jX    and  


n

i i cxit
1

.),(cos  

Proof: Suppose on the contrary that there exists a MP 
rP  

with dPax
i

j

ii  }|{  such that 

.}|{\  r

iXii

r

X PaandSaaPS  Choose an r

Xi PSa \  

and let ).,...,,(),...,,1,,...,,( 211121 nniiii yyyxxxxxxeXY  
 

Then  
i

r

ii Pay }|{  
i

r

ii dPax }|{  due to the fact 

that r

i Pa   and so dYV )(  which contradicts the fact that  

Xi Sa  . Hence, }}|{}{ dPaxPS
i

j

ii

j

jX    and 

 


n

i i cxit
1

.),(cos         □ 

 

Theorem 2. If X is a (d,c)-MC, then there exists at least one 

MP },...,,{ 21 rrnrr

r aaaP   such that the following conditions 

are satisfied: 

dxxx
rrnrr  ...21

                                         (1) 

iii uxl   for all r

i Pa                                         (2)  

ii ux   for all 
r

i Pa                                            (3) 

 


n

i i cxit
1

),(cos                                                (4) 

Proof: Let J be the non-empty index set of MPs such that 

dPax
i

j

ii  }|{  for Jj  and dPax
i

j

ii  }|{  

for  Jj . Choose a rP  with  Jr , say 

},...,,{ 21 rrnrr

r aaaP  , then  dPax
i

j

ii  }|{ , i.e., 

dxxx
rrnrr  ...21

 

iii uxl   for all r

i Pa   

By Theorem 1, 

,\}}|{|{\\ XXi

j

ii

j

Jj

r BSAdPaxPAPA  
 i.e., 

ii ux   for .r

i Pa   Finally, the total transmission cost is no 

more than c, i.e., 





n

i

ni cxntxtxit
1

1 .),(cos...),1(cos),(cos     

 

Any vector ),...,,( 21 nXXXX   which satisfies constraints 

(1) - (4) simultaneously will be taken as a (d,c)-MC candi-

date. A (d,c)-MC is obviously a (d,c)-MC candidate by The-

orem 2. By definition, a (d,c)-MC candidate X is a (d,c)-MC 

if (1) dXV )( , (2) 
XX SN  , and (3) the total transmis-

sion cost is no more than c. 

 

Theorem 3. If the network is parallel-series, then each (d,c)-

MC candidate is a (d,c)-MC. 

Proof: Such a network can be considered as the parallel of 

its MPs mPPP ,...,, 21 . Let X be a (d,c)-MC candidate which 

is generated with respect to rP  according to Lemma 2. 

Since the network is parallel-series,  rj PP  for each 

rj  . Then dPax
i

r

ii  }|{  and 

 }|{
i

r

ii Pax }|{ 
i

j

ii Pau dkUV  )(  for each 

rj   In particular, dXV )(  and 

.}}||{ r

i

j

ii

j

jX PdPaxPN    Hence, X is a (d,c)-MC. 
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Algorithm 
 

Suppose that all MPs, mPPP ,...,, 21 , have been stipulated 

in advance [4, 7, 14-15], the family of all (d,c)-MCs can then 

be derived by the following steps: 

Step 1. For each },...,,{ 21 rrnrr

r aaaP  , find all integer-

valued solutions of the following constraints by ap-

plying an implicit enumeration method: 

(1) dxxx
rrnrr  ...21

                               

(2) 
iii uxl   for all r

i Pa               

(3) 
ii ux   for all r

i Pa     

(4)  


n

i i cxit
1

),(cos                           

Step 2. Check each candidate X one at a time whether it is a  

(d,c)-MC: 

(a)  If the network is parallel-series, then each candi-

date is a (d,c)-MC. 

(b) If the network is non parallel-series, then check 

each candidate whether it is a (d,c)-MC as fol-

lows: 

(2.1) If there exists an rj   such that 

 
i

j

ii dPax }|{ , then X is a (d,c)-MC 

and go to step (2.4). 

(2.2)  Let index set  
i

j

ii dPaxjI }.}|{|{  

(2.3)  If there exists an j

Iji PAa  \  such that 

ii ux  , then X is not a (d,c)-MC, else X 

is a (d,c)-MC. 

(2.4)  Next candidate. 

 

An Example 

 

 
Figure 1: A bridge network. 

 

 

 

Table 1. Probability distributions of transmission time and 

transmission cost 

arc time cost Probability 

1a  
3 Cost(1,3)=3 0.30 

2 Cost(1,2)=4 0.50 

1 Cost(1,1)=5 0.20 

2a  
2 Cost(2,2)=2 0.40 

1 Cost(2,1)=3 0.50 

3a ,  2 Cost(3,2)=2 0.80 

1 Cost(3,1)=3 0.20 

4a  2 Cost(3,2)=2 0.80 

1 Cost(3,1)=3 0.20 

5a  2 Cost(4,2)=2 0.70 

1 Cost(4,1)=3 0.30 

6a  
3 Cost(5,3)=3 0.60 

2 Cost(5,2)=4 0.35 

1 Cost(5,1)=5 0.05 

 

It is known that )1,1,1,1,1,1(),,,,,( 654321  llllllL  with 

,2)( LV  )3,2,2,2,2,3(),,,,,( 654321  uuuuuuU  with 

5)( UV , and there exists four MPs; 

}.,{},,,{},,,{},,{ 65

4

542

3

631

2

21

1 aaPaaaPaaaPaaP 

  

Hence, 4,6  mn  and  the system has 4 levels: 2, 3, 

4, 5. Given 4d  and 16c , the family of (4,16)-MCs is 

derived as follows: 

Step 1. For },{ 21

1 aaP  , find all integer-valued solutions of 

the following constraints by applying an implicit 

enumeration method: 

421  xx  

31 1  x  

21 2  x  

,2,2 43  xx  and .35 x  

Two feasible solutions are 

)3,2,2,2,2,2(),,,,,( 654321 xxxxxx  and 

),,,,,( 654321 xxxxxx )3,2,2,2,1,3( . 

(1) When )3,2,2,2,2,2(),,,,,( 654321 xxxxxx , the total 

transmission cost is 

1615322224),(
5

1


i

ixic  

(2) When )3,2,2,2,1,3(),,,,,( 654321 xxxxxx , the total 

transmission cost is 

1615322233),(
5

1


i

ixic  

Two (4,16)-MC candidates )3,2,2,2,2,2(1 X  and 

)3,2,2,2,1,3(2 X  are obtained. 
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Step 2. Check )3,2,2,2,2,2(1 X  whether it is a (4,16)-MC. 

(2.1) 4}|{ i

j

ii Pax  for each jP  with .1j  

(2.2)  
i

j

ii PaxjJ }.1{}4}|{|{  

(2.3) )3,2,2,2,2,2(1 X  is a (4,16)-MC. 

(2.4) Next candidate (i.e., check )3,2,2,2,1,3(2 X  

whether it is a (4,16)-MC. 

(2.1) 4}|{ i

j

ii Pax  for each jP  with .1j . 

(2.2)  
i

j

ii PaxjJ }.1{}4}|{|{  

(2.3) )3,2,2,2,1,3(2 X  is a (4,16)-MC. 

Step 1. For },,{ 631

2 aaaP  , find all integer-valued solu-

tions of the following constraints by applying an im-

plicit enumeration method: 

4631  xxx  

31 1  x  

21 3  x  

31 6  x  

,22 x  ,24 x  and .25 x  

Three feasible solutions are 

),2,2,2,1,2,1(),,,,,( 654321 xxxxxx ),,,,,( 654321 xxxxxx

),1,2,2,2,2,1(  and ).1,2,2,1,2,2(),,,,,( 654321 xxxxxx  

……… 

The result is listed in Table 2. 

 

Table2. List of all (4,16)-MCs 
rP  (4,16)-MC candidate (4,16)-MC? 

1P  
)3,2,2,2,2,2(1 X  Yes 

)3,2,2,2,1,3(2 X  Yes 

2P  

)2,2,2,1,2,1(3 X  No 

)1,2,2,2,2,1(4 X  No 

)1,2,2,1,2,2(5 X  No 

3P  

)3,1,1,2,2,3(6 X  No 

)3,1,2,2,1,3(7 X  No 

)3,2,1,2,1,3(8 X  No 

4P  
)2,2,2,2,2,3(9 X  Yes 

)3,1,2,2,2,2(10 X  Yes 

 

Reliability Evaluation 
 

If ),(,...,, 21 cdm
YYY  are the collection of all (d,c)-MCs, then 

the system reliability for level (d,c) is defined as 

}}.|{Pr{ ),(

1),(

im

icd YXXR cd  
 To compute it, several meth-

ods such as inclusion-exclusion [5, 8], disjoint subset [10], 

and state-space decomposition [3] are available. Here we 

apply the state-space decomposition method to the example 

and obtain that .9496.0}}|{Pr{ )16,4(

1)16,4(  

im

i YXXR  

 

Conclusion 
 

Given all MPs that are stipulated in advance, the proposed 

method can generate all (d,c)-MCs of a probabilistic trans-

portation/logistics system whose transmission times and 

transmission costs are random variables for each level (d,c). 

The system reliability, i.e., the probability that the shortest 

transmission time from the source node s to the sink node t 

is less than or equal to d and the total transmission cost is no 

more than c, can then be computed in terms of these (d,c)-

MCs. 
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