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Abstract  
 

This paper works out the problem of service system with 

the round robin of data after expiration of the allocated time 

quantum q. It brings the solved mathematical model and 

quantification of conditions that occur with this special type 

of service. It shows the dependence between the system 

load, distribution of the stored requests in the queue and the 

number of repeated returns of the in-process requests into 

the queue. At the end the critical limit values for p, n, and ρ 

parameters are considered here as well as their impact on 

overall system operation [1] – [4]. 

 

Introduction 
 

 For the needs of this paper we suppose there is such a 

mechanism of data processing by the transmission system 

that it will provide its capacity for every request for equally 

long time, and maximally for the defined time interval (time 

quantum – q) within which the request processing takes 

place [5], [6]. If the allocated time quantum does not suffice 

for the processing, then the in-process request is interrupted, 

gets into the queue, while later processing will continue 

where the interruption occurred. This cyclical algorithm will 

proceed until the expiration of n time quanta necessary for 

processing the entire request. We will model the mechanism 

of the system operation by the queuing theory [1] – [4], 

while we work out the problem of the time quanta allocation 

in detail and quantify the transmission system characteris-

tics. 

 

Derivation of Significant Time Pa-

rameters for the Time Quantum Ser-

vice Strategy 
  

To quantify the transmission system characteristics we 

will use the model shown in Fig.1. The transmission system 

is represented by the node U. In this node there is a queue 

that represents the memory for storing the requests that enter 

the system from external environment (or from the preced-

ing node), as well as the requests that were serviced and 

their service was interrupted after expiration of the time 

quantum q. 

 

 
Figure 1. Model of the Service System with the Time Quantum 

Service Strategy 

 

Furthermore, the node contains the execution unit of the 

transmission system that services the requests with the ser-

vice intensity μ. For the needs of this model let us first de-

fine the following representation. The set of all processed 

messages will be represented to the set of requests and the 

execution unit of the transmission system will be represented 

to the set of service systems. 

One of the first issues we have to deal with is how to de-

termine the request flow entering the system. We will as-

sume that the requests entering the system agree with the 

elementary request flow with the Poisson distribution of 

arrivals and exponential distribution of time between their 

arrivals, while  is the parameter of the exponentially ran-

dom variable that represents the intensity of the request arri-

vals from external environment [5], [6], [7], [8]. 

After arrival of the requests to the system they are put into 

queue. If the queue is empty (this occurs with the probability 

p0 = 1 – ρ, where ρ is the system load defined by the appro-

priate relation ρ = λ/μ), the arriving request is serviced im-

mediately. Otherwise it is put into queue and waits for its 

servicing. Once the service of the request has finished, it 

leaves the system with the probability μ∙ρ. If the allocated 

time quantum does not suffice for the request servicing, the 

servicing is interrupted, the request is put into the queue 

again while another request from the queue is chosen to be 

serviced. The requests are chosen to be serviced according to 

FIFO strategy. As we assumed in previous that the request 

entries into the system are divided by the Poisson distribu-

tion, we will again assume that each request service time 

agrees with the exponential distribution with the density 

probability distribution μ∙e
-μ∙t

 and with the parameter  1. 

Further on we will deal with the detailed analysis of the time 
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conditions and subsequently with the quantification of sig-

nificant parameters of the described service system. 

For the needs of time parameters derivation we have to 

determine the general conditions of the transmission service 

system. 

Let us first assume that the defined time quantum q will 

agree with the service time of at least one of the requests. If 

such a request exists, then after its servicing i.e. after expira-

tion of the allocated time quantum q the request either leaves 

the system or enters another node. 

Next, let us assume that the requests will enter the system 

one after another with different service time. Let us choose 

one of them and assume that n time quanta will be necessary 

for its entire servicing. The request service time will be n∙q. 

This will occur in the case of empty system and after the 

request arrival into the system its servicing will start imme-

diately. At the same time we assume that during the request 

service time no other request will enter the system and the 

intelligent transmission system will choose such a utility 

algorithm that will recognize this state. The cyclical algo-

rithm, (i.e. the return of the request after expiration of the 

time quantum q into the queue), will not be applied for this 

type of service. The distribution of the service time will be 

geometric with the parameter p and will be given by the rela-

tion [1], [2], [3]: 

 

    
 1( ) 1

0 1 1;2... 0

nP x n q p p

p n k q t

    

    
 (1)           

 

We will further assume that the system at the time of our 

request arrival contains j requests altogether. At the time of 

arrival of the observed request with the service time of n∙q, 

the (j – 1) requests are waiting in the queue before it and one 

request is being serviced. Let us define the time between the 

expiration of the allocated time quantum of the serviced re-

quest and its repeated return into the queue. This time will 

be called the transition time and will be marked as τi, where 

variable i = 1, 2 … m. For the first transition of the observed 

request we have to take into account the fact that the request 

has to wait in the queue for (j – 1) requests in the queue be-

fore it to be serviced and that at the time of its arrival one 

request is just being serviced. The service time of j requests 

by the first transition is q. The state of the first transition of 

our observed request is given by the formula: 

 

    
 1 1 1

0 1

a q j q q

a

       

 
 (2)           

 

The product a∙q is the request service time at the time of 

arrival of the observed request in the queue. The time prod-

uct (j – 1)∙q is the service time of (j – 1) requests that are in 

the queue and q is the service time of our request. The time 

product (n – 1)∙q equal to (n – 1) transitions, are left for the 

overall service. 

By the second transition of the observed request through 

the service system there will be those from j requests whose 

service time is greater than q. These requests stay in the ser-

vice system and are put into the waiting queue after the first 

transition. Their number is on average j∙P(x > q) [1] – [4]. 

Then the probability of the service time of such requests is: 

 

    ( )P x q p   (3)           

 

For the sake of completeness we have to state that if the 

request service time is shorter than the time quantum q, then 

the appropriate probability equals P(x ≤ q) = 1 – p, while for 

the total probability P(x > q) + P(x ≤ q) = 1 is valid. We also 

have to realize that during the first transition further λ∙E(τ1) 

requests on average entered the system, while λ is again the 

arrival intensity. The average length of the service time of 

the observed request during the second transition is given by 

the formula: 

 

    

   

   

   

2 1

1

1

1

1

E p j q E q q

E q q p j

q E p j

  

 

 

       

       

       

 (4)           

 

If we denote ν2 = λ∙E(τ1) + (1 + p∙j), then the formula (4) can 

be rewritten into the form: 

 

     2 2E q v    (5)           

 

In general we can rewrite for the i-th transition: 

 

    
 2 2

2;3... 1

E q v

i n

  

 
 (6)           

 

As with the observed request there were νi – 1 requests in the 

waiting queue in the i-th transition, it is valid: 

 

         1 11i iE p v q E q q            (7)           

 

Formula (7) can be written in the form: 

 

           1 1i iE p q E q p           (8)           

 

If we denote b = (p + λ∙q), then formula (7) can be rewritten 

into the form: 
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 

       

1

1 1

2 1 1 / 1

i

i i

E

b E q p b b







 



        
 

(9)           

 

The number of repeated returns of the considered request 

into the waiting queue (number of transitions) determines 

the average request stay time in the service system [1], [3]. If 

the number of requests in the waiting queue before the con-

sidered request was j altogether, then the average request 

stay time in the system can be marked Rn(j), where n is the 

multiple of the time quantum q. Then, the request stay time 

of considered request Rn(j) is given by the formula: 

 

    

       

 

1 2

1

...n n

n

i

i

R j E E E

E

  




    


 (10)           

 

On the basis of the relation (9) we will write the expres-

sion of the average time of the n-th transition in the form: 

 

    
   

     

2

2

1 21 1 1

n

n

n

E b E

b q p b

 

 

  

      
 (11)           

 

We can modify the element q∙(1 – p)∙(1 – b)
-1

 from the re-

lation (11) into the form: 

 

        
11

1 1 1 / 1q p b q q p


           (12)           

 

Parameter b is given by the relation b = (p + λ∙q). If the el-

ement λ∙q/(1 – p) = ρ from the equation (12) is the system 

load, then term q/(1 – p) = μ
-1

 has to represent the average 

service time. We will show this is true. As p and q are the 

parameters of geometric probability distribution given by the 

relation (1), at first we will determine the moment generat-

ing function of this probability distribution [1], [2], [3]: 

 

    

   

 

1

1

1

1

n t

x

n

n t n

n

m t e P x n q

e p p







 


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   




 (13)           

 

Formula (13) can be rewritten into the form: 

 

         
1

1

1
n

t t

x

n

m t e p e p






      (14)           

 

Summation in the equation (14) represents the sum of ge-

ometric progression: 

 

       
1

1

1/ 1
n

t t

n

e p p e






     (15)           

 

Moment generating function can be rewritten into the 

form: 

 

         1 / 1t t

xm t e p p e      (16)           

 

By derivation of moment generating function we will de-

termine the k-th moment: 

 

    
0

/k k k x t k

x t
d m t dt E x e E x


             (17)           

 

Next, we determine the first E(x) and second E(x
2
) mo-

ment of generating moment function. For t = 0, the term E(x) 

represents the average value. First moment will gain the 

form: 

 

       1 0 1/ 1m p   (18)           

 

Second moment will gain the form: 

 

       
2

2 0 / 1m p p   (19)           

 

Next, by applying the fundamentals statistic equations 

E(q∙x) = q∙E(x); D(q∙x) = q
2
∙D(x) and D(x) = E(x

2
) – E

2
(x) 

will be: 

 

        1

1 0 / 1q m q p      (20)           

 

Equation (20) represents the average service time. System 

load is given by the formula: 

 

     / 1q p     (21)           

 

Then the element from the equation (12) given by the (21) 

really represents the system load. Applying the relation (12), 

the expression (11) will gain the form: 

 

    
   

   

2

2

1 21 1

n

n

n

E b E

q b

 





 

  

    
 (22)           

 

To be able to calculate the average stay time of the con-

sidered request in the system we have to determine the aver-
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age value of the time of the first transition E(τ1) in the rela-

tion (10). This will be determined from the relation (2) in a 

following way: 

 

       1 1a q j q q q a j           (23)           

 

Next, the average value of the time of the first transition 

is: 

 

    

   

   

   

1

1 1

E E q a j

q E a E j

q E a E j

      

     

      

 (24)           

 

Expression E(j – 1) = Q represents the average value of 

the requests in the waiting queue. Subsequently, the relation 

(25) is valid: 

 

    / 2   (25)           

 

Expression (25) means, that the system by the service is 

loaded during a∙q time by the load ρ∙q/2, because the aver-

age value equals E(a) =1/2. The average value of the first 

transition time E(τ1) will gain the form: 

 

       1 / 2 1E q Q      (26)           

 

After substituting into the relation (10) we will determine 

the average stay time of the considered request in the service 

system: 

 

    
   

   

2

2

21 / 1

n

n

n

R j b E

q b









  

   
 (27)           

 

Next, it is necessary to determine the average number of 

requests in the system. This can be calculated from the 

Chinchin-Pollaczek formula [1] – [4]: 

 

       2 2 2 / 2 1L            (28)           

 

By applying the fundamentals statistic equations and the 

formula (19) the dispersion will be: 

 

     
22 2 / 1p q p     (29)           

 

The expressions (21) and (23) can be substitute into the re-

lation (28): 

 

       2 1 / 2 1L p         (30)           

 

The average number of requests in the waiting queue is 

given by the formula: 

 

       2 1 / 2 1Q p       (31)           

 

Then the average number of requests in the waiting queue 

is given by the formula: 

 

    L Q   (32)           

 

Discussion 
 

Within the discussion we consider the real packet pro-

cessing system [5] – [8]. We assume that the average size of 

the transported packets is E(X) = 10 kbit (RTP packets 

transported video traffic) and the transfer capacity of the 

system is BR = 256 kbit/s (multilink PPP). In this case the 

size of the time quantum can be determined as q = 

E(X)/5∙BR. We will also assume following operational pa-

rameters – system probability p = 0,85 and load coefficient ρ 

= 0,8. The results for the given service system are demon-

strated in Fig. 2, Fig. 3 and Fig. 4. 

 

 
Figure 2. Total Time Delay Dependence on the Time Quantum 
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Figure 3. Queue Length Dependence on the System Load 

 

Let us first analyze the allocated time quantum q. In this 

paper we deal with the time quantum with the mathematical 

point of view. In reality the time quantum is limited by the 

performance of the technical and software resources of the 

transported service system as well as the algorithm of the 

serviced requests. Serviced requests can be correctly divided 

into n independent time intervals. In real conditions it will 

always be q > 0.  

 

 
Figure 4. Total Time Delay Dependence on the System Load 

 

The formula (1) gives relation between the probability p 

and the time quantum q. Parameters in formula (1) satisfy 

the inequalities p ≤ 1 and n > 1. If with p → 1 the prevailing 

requests in the system will be the ones with the service time 

longer than the time quantum q, which results in the increase 

of the average number of requests in the queue, the relation 

(31) is valid. From the point of view of the technical solution 

of the transmission system the queue length determines the 

capacity of the technical facility (most often the memory) for 

request recording. As resulting from the relation (27) the 

average number of requests in the queue Q influences the 

average stay time Rn(j) of the requests in the system. As we 

can see in Fig. 2, the average time increases rapidly in the 

vicinity of the parameter values p → 1 and ρ → 1. 
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