
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

15

A PRACTICAL APPROACH TO EXPOSE THE PUBLIC KEY INFRASTRUCTURE FEATURES THROUGH WEBSERVICES

A PRACTICAL APPROACH TO EXPOSE THE

PUBLIC KEY INFRASTRUCTURE FEATURES

THROUGH WEBSERVICES

Ebot Ebot Enaw, Djoursoubo Pagou Prosper
University of Yaounde I, Cameroon

National Advanced School of Engineering

Department of Computer Sciences

Abstract

The Public Key Infrastructure (PKI) provides services

that permit users to communicate in a secure manner on an

unsecure network by means of digital certificates and

cryptography primitives. However, in order to secure an

application through cryptography and PKI, cryptographic

primitives need to be implemented in the programming

language used to develop the application. This raises

scalability and interoperability issues as the diversity of

programming languages and development environments

requires all cryptography primitives to be implemented in

each of the existing programming languages.

Therefore, this paper presents a practical approach to

secure an application with cryptographic primitives

developed in different languages through service oriented

architecture technology.

Keywords: web service, PKI,cryptography,SOAP.

1 Introduction

In recent years, in order to curb cyber-attacks that are

perpetrated against software, cryptography and Public Key

Infrastructure (PKI) have become very popular in software
development. Public Key Infrastructure through digital

certificates and cryptographic algorithms provides

confidentiality, integrity, authenticity and non-repudiation

which are essential properties for data and transactions

security. Although PKI provides so many useful features, its

integration in software source code poses a major issue since

for every application that needs to be secured by PKI, the

cryptographic primitives used to secure the application needs to

be implemented in the same programming language as that of

the application in question. Given the complexity and

dynamics of cryptographic algorithms, and the ever growing

change in programming languages and environments, it might
be difficult and cumbersome to implement and update these

algorithms in the numerous programming languages available.

New concepts have been developed over the years to

improve software engineering through interoperability and

software component re-usage that were major concerns for

developers. Among these concepts, Service Oriented

Architecture (SOA) is one of the most prominent as it provides

interoperability between applications and software components

re-usage regardless of their programming language and
environment.

The aim of this paper is to present an approach which

enables the reuse of cryptographic primitives developed in Java

to secure softwares developed in other programming languages

using SOA and XML.

2 Related work

Some research have been done on topics related to this issue

namely [1] that conducts a comparative study of Identity-based

Public Cryptography (ID-PKC) and traditional Public Key

Infrastructure based on several aspects including technical,

architecture and policy. Their study revealed that the two

systems are very similar however there are some areas in which

they differ namely, the binding of the public and private keys:
while in the traditional PKI, it is achieved through the use of a

certificate, in an ID-PKC mechanism, the binding between the

private key and the data is managed by a Trusted Authority

(TA) at the point of request, while the binding between the

public key and the data can be done by anyone at any point.

Therefore the ID-PKC best suits environments where a

centralized security policy is checked regularly and there is a

strong binding between a user and the identifier of the

communication end point such as mobile networks whereas

PKI is more adapted to environments where the policy should

be controlled locally at the level of the client.
[2] first surveyed approaches and concepts related to service

oriented architecture and then in an effort to cater for the

combination of the SOA paradigm with event-driven

processing, proposed an extension to SOA called xSOA that

incorporates a service composition layer to offer necessary

roles and functionality for the consolidation of multiple

services into a single composite service. In addition, xSOA

provides a separate tier for service management that can be

used to monitor the correctness and overall functionality of

aggregated/orchestrated services, supporting complex

aggregate (cross-component) management use cases, such as

service-level agreement enforcement and dynamic resource
provisioning.

[3] in an effort to establish a baseline of performance data that

can be used to explore performance/security tradeoffs in

environments with complex attributes, such as resource or

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

16

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 5

bandwidth limitations, presents the results of a series of

experiments aimed at analyzing the performance impact of
adding WS-Security to SOAP-based web services.

[4] presents the concepts and technologies that underpin web

services along with their vulnerabilities and then presents

WS-Security concepts as well as algorithms for SOAP message

encryption.

 Though [1] presents PKI architecture and [2], [3] and [4]

deal with web services and its security through PKI, none of

these research papers provide a methodology for providing

interoperability and reusability of cryptographic primitives.

 Therefore, this paper is intended to help individuals and

institutions that can’t afford a cryptographic toolkits for each
available programming language to reuse PKI primitives

developed in Java using web services to secure applications

developed in other programming language.

3 Research problem

Given the surge in cybercrimes and the ubiquity of ICT, it is

indispensable for software developers to use the Public Key

Infrastructure to secure their applications. However securing

applications through PKI requires the integration of PKI toolkit

or API which contain the cryptographic primitives into that

application. This raises a particular issue since for every

application to secure the developer needs to find the toolkit
developed in the same programming language as the

application he wants to secure. In order to solve this issue we

propose an approach based on Service Oriented Architecture

(SOA) which uses toolkit/API developed in one programming

language to secure applications regardless of the programming

language used to develop them. The SOA and PKI concepts are

described in section 4 and 5 below.

4 SOA

Service Oriented Architecture (SOA) is an architecture that

has been designed to deliver interoperability and flexibility in

software design. Companies use applications developed in

different programming technologies that need to interact in an

effort to accomplish business goal. Moreover, in order to adapt
to the ever changing business environment, software design

should be flexible so as to ensure cost effective modifications.

With SOA, application business logic is divided into services

that are loosely coupled and interact properly regardless of the

programming language used to implement them.

SOA as depicted in the figure below relies on some concepts

such as:

- WSDL (Web Services Description Language): it is the

standard derived from XML used to describe the

interface of web services ;
- UDDI (Universal Description Definition and

Integration): it is the standard used to register and look

up services. In fact, services are published in a directory

where applications can invoke them through UDDI.

- XML schema (XSD): Given that SOA services are

designed to operate in heterogeneous environments,

XML has been defined as the language used to specify

messages exchanged between services.
- SOAP: It is the protocol used at the transport layer to

exchange messages between the service consumer and

the service provider.

 Figure 1: SOA architecture

5 PKI System

In recent years, Public key infrastructures have become the

starting point for modern security mechanisms on the Internet,

PKI is closely linked to the asymmetric key encryption, digital

signatures and encryption services [5]. PKI is a combination of

hardware, software, facilities, people, policies, and processes

that are leveraged to create, manage, store, distribute, and

revoke digital certificates that lie at the heart of a trusted

identity system or Certification Authority (CA). PKI has been

recognized as an important security component in digital

infrastructures to support authentication, integrity,

confidentiality, and non-repudiation [9].

5.1. PKI services

Cryptosystem which is the software or hardware

implementation of the cryptographic process provides the

following services [6, 7]:

• Confidentiality - keeping the private nature of a
message is achieved through encryption; the message
recipient public key is obtained from his/her
certificate in order to establish an encrypted or
ciphered message that can only be decrypted by the
message recipient private key.

• Integrity – ensuring message or information has not
been changed accidentally or deliberately with the
help of a digital signature.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

17

A PRACTICAL APPROACH TO EXPOSE THE PUBLIC KEY INFRASTRUCTURE FEATURES THROUGH WEBSERVICES

• Authenticity - confirming the identity of an
individual, a corporation, an application or device
using an information system.

• Non-repudiation – Proving that a specific user is an
author of a message or information with the help of
digital signature.

5.2. PKI components

PKI integrates digital certificates, public key cryptography

and Certification Authorities into an organization-wide

network security architecture [8]. A typical organization PKI

encompasses the issuance of digital certificates to individual

users and servers; end-user enrollment software; integration

with certificate directories; tools for managing, renewing and

revoking certificates and related services and support. The

main components of the PKI landscape are:

- End Entity. End-users, corporations, devices (e.g

servers), or any other entity that can be identified in the

subject field of the digital certificate.

- Digital Certificate. Electronic credential, consisting of

public key, which is used to sign and encrypt data.

Digital Certificates provide the foundation of a PKI.

- Certification Authority (CA): Trusted entity that

issues and revokes digital certificates.

- Registration Authority (RA): An entity accredited by

CA to validate requests for issuing digital certificates

and identifies end entities.

- Certificate Policy and Practice Statements:

Documents that outline how the CA and its certificate

are to be used, the degree of trust, legal liabilities if the

trust is broken, and other related issues.

- Certificate Repository: A directory of services or other

locations where digital certificates are stored and

published.

- Certificate Revocation List: List of certificates that

have been revoked before reaching the scheduled

expired date.

5.3. Traditional architecture

There are three basic types of architectures composed

according to the level of trust of Certification Authorities (CA)

on existing PKI [10, 11]:

- Single CA (Root CA) is a CA that issues certificates to

users and systems, but not to other CAs. It is easy to

build and maintain. All users trust it and have one

certificate on the trust path.

- Hierarchical PKI is the traditional architecture, all

users trust the same central root CA and all the CA have

a single superior CA, except the root CA.

- Mesh PKI is the first alternative to a hierarchy, multiple

CAs provide PKI services and the CAs are related

through per-to-per relationships, each user trust a single

CA. Certificates issued to CA in a mesh PKI are more

complex than the ones usually found in a hierarchical

PKI.

6 Our Solution

6.1. Methodology

In an effort to provide a solution for the re-usage of

cryptographic primitives, we designed a new architecture based

on the following methodology:

1. Select a reliable application programming interface

(API) containing cryptographic primitives

implementations: given the flexibility, the reliability and

the robustness of Java platform especially its J2EE

framework, we selected the Java Cryptography

Architecture (JCA) which contains java implementations

of popular cryptographic primitives as the foundation

API of our architecture ;

2. Develop a middleware based on webservices that will

permit applications to use cryptographic primitives

contained in the API (JCA in our case) regardless of their

programming language. To this end we used the JAX-

WS framework that will be described in subsequent

sections ;

3. Develop a module that will secure communication

between the application and the middleware. To this end,

we used the WS-Security standard that will be described

in subsequent sections ;

6.2. Description of the system modules

 With regard to the methodology presented in the previous

section, our framework is made up of three (03) main

components namely the JCA framework, the webservice

wrapper and the WS-Security framework which are depicted in

the figure below. These modules will be described in

subsequent sections.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

18

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 5

 Figure 3: Architecture of our system

6.2.1 Java Cryptography Architecture

The Java Cryptography Architecture (JCA) is a set of

modules and API (applications programming interface)

provided by the Java framework and aimed at permitting

programmers integrate security features into their Java

applications easily.

 It is built on two main principles [11] :

- Implementation independence and interoperability:

The JCA is designed so that applications don’t need to

implement security algorithms rather they invoke

security services they want to use from the Java

platform. These security services are usually

contained within components called providers. JCA

enables implementation interoperability which means

that different implementations can work with each

other’s keys, verify each other’s signatures, etc.

- Algorithm independence and extensibility: Although

security services are implemented in several providers

in different manners, they do respect a common

standard in their implementation. This permits other

security algorithms to be implemented and added

dynamically. However the Java platform includes a

number of built-in providers that implement a basic

set of security services that are widely used today

among which the programmer is free to choose

anyone depending on his needs.

To satisfy the two aforementioned principles, JCA relies

on two main components:

- Cryptographic Service Provider (CSP) : It is a package

or set of packages that implement cryptographic

services, such as digital signature algorithms, message

digest algorithms, and key conversion services. Thus

depending on his needs, the programmer through its

application simply requests a particular service (such

as the DSA signature algorithm) and gets an

implementation from one of the installed providers.

However, the programmer can request an

implementation from a specific provider. When faster

or more secure versions of algorithms are released,

providers can be updated transparently to the

application accordingly. Additional providers may be

added statically or dynamically. Clients may configure

their runtime environment to specify the

provider preference order which is the order in which

providers are searched for requested services when no

specific provider is requested. As stated earlier,

although providers implement security services in

different ways, they comply to a common standard

called Service Provider Interface (SPI) which is an

abstract class.

- Engine Class: An engine class provides the interface

to a specific type of cryptographic service,

independent of a particular cryptographic algorithm or

provider. The type of services supported are

cryptographic operations (encryption, digital

signatures, message digests, etc.), generators or

converters of cryptographic material (keys and

algorithm parameters), or objects (keystores or

certificates) that encapsulate the cryptographic data

and can be used at higher layers of abstraction. Every

invocation of engine class methods are routed to the

provider's implementations through classes that

implement the corresponding Service Provider

Interface (SPI). That is, for each engine class, there is

a corresponding abstract SPI class which defines the

methods that each cryptographic service provider's

algorithm must implement.

6.2.2 Webservice wrapper

 This component is made up of software components that

permit the exposure of cryptographic primitives contained in

JCA framework as web service. To implement this component,

we developed service endpoint implementation (SEI) based on

the JAX-WS library that accesses the cryptographic primitives

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

19

A PRACTICAL APPROACH TO EXPOSE THE PUBLIC KEY INFRASTRUCTURE FEATURES THROUGH WEBSERVICES

contained in the JCA framework. A service endpoint

interface or service endpoint implementation (SEI) is a Java

interface or class, respectively that declares the methods that a

webservice client can invoke on the service [12]. It is worth

mentioning that JAX-WS does not permit classes or methods

that need to be exposed as webservices to be defined as static

or final. Thus, given that several JCA engine classes or

methods are static or final, to develop their corresponding SEI,

we developed our own classes and methods and set them as

public. The developed classes and methods were designed to

invoke the genuine JCA classes and methods. The just

developed SEI then gathers the input parameters, supplies them

to the engine class in question, gets the result and delivers it as

output. Once the Service Endpoint is developed, we use the

Netbeans IDE to generate the WSDL. To sum up, this module

takes as input the java code of a cryptographic primitive and

delivers as output the corresponding webservice (WSDL and

Service Endpoint Implementation). Although at this point an

external application can fully interact with our webservice, this

interaction takes place in an unsafe environment which as such

jeopardizes the confidentiality, integritiy and non-repudiation

of the transactions. In this light, we designed a layer called

WS-Security that helps overcome this issue by providing a way

to secure the communication between external applications and

the webservice.

6.2.3 WS-Security

This component is aimed at securing communication

between the application to be secured and the webservice. It is

based upon WS-Security which is a specification that provides

the following security services over web services:

- Authentication: WS-Security defines how different

security tokens should be transferred within SOAP

messages and how the receiver can extract and verify

them to authenticate the sender.

- Integrity: WS-Security uses digital signatures, by

employing XML Signature.

- Confidentiality: WS-Security provides specifications for

XML document encryption to guarantee that even if the

message is eavesdropped, it cannot be understood.

In order to implement WS-Security the developer needs to

specify a security policy and then binds the said security policy

to the WSDL.

6.3 Technical environment

To develop our solution we used:

 A server with the following characteristics: 16 GB RAM,

1To Hard disk, Intel Xeon 1.87Ghz *16

 Netbeans 7.3: Netbeans is a popular free IDE (Integrated

Development Environment) that supports many languages

like Java and PHP ;

 Java and Tomcat 7.0.34.0

7 Concrete Implementation of our

approach

Within the framework of our article, we illustrate a concrete

use of our methodology using the Signature engine class which

is a JCA component in charge of digital signatures and we

show how this raw JCA component is transformed into

webservices using our methodology as follows:

7.1 First step of our methodology

Since we want to expose the digital signature features as

webservices, according to our methodology we have to identify

a module in the JCA framework that implements these features.

In the JCA framework, the Signature Engine Class is the

component that implements digital signature features. The class

has two main methods sign for signing data (using the private

key) and verify for verifying digital signatures (using the public

key), nevertheless before these methods can be invoked, the

Signature Engine Class should be initialized using the methods

initSign, initVerify and update. Given that initSign, initVerify

and update are used only for purposes internal to the Signature

Engine Class, we will focus solely on sign and verify methods

used to implement the data signature and signature verification

processes.

7.2 Second step of our methodology

 The second step consists of implementing the webservice

which is made up of the Service Endpoint Implementation class

of the Signature Engine Class identified previously and its

corresponding WSDL.

To develop the Service Endpoint Implementation class we

proceed as follows:

For the signature method, we first define the provider of the

algorithm we want to use, then we create an instance of the

signature class that we initialize with the private key, and

finally we applied the signature algorithm with the private key

to the data.

For the verification method verif, after recovering the

provider, we initialize the verif method with the public key,

then we applied the method to the data which outputs a

Boolean “1” if the signature matches and “0” if not.

According to JAX-WS syntax all methods to be exposed as

webservice should be annotated with @WebMethod, and

classes should be annotated with @WebService.

The source code of the service endpoint implementation is

provided below.

package WebService;

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

20

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 5

import java.io.ByteArrayInputStream;

import java.nio.ByteBuffer;

import java.security.*;

import java.security.cert.CertificateException;

import java.security.cert.CertificateFactory;

import java.security.spec.InvalidKeySpecException;

import java.security.spec.X509EncodedKeySpec;

import javax.ejb.Stateless;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

@WebService(serviceName = "SignWebService")

@Stateless()

public class SignWebService {

 Signature mysignature;

 @WebMethod(operationName = "Sign")

 public byte[] Signature(@WebParam(name =

"myprovide") String provide, @WebParam(name = "myalgo")

String algorithm, @WebParam(name = "myprivateKey")

byte[] privatekeybytes,@WebParam(name = "mySecRan")

SecureRandom random, @WebParam(name = "mydata")

ByteBuffer data) throws NoSuchAlgorithmException,

InvalidKeyException, SignatureException,

NoSuchProviderException, InvalidKeySpecException

 {

 Provider provider = Security.getProvider(provide);

 mysignature = Signature.getInstance(provide);

 X509EncodedKeySpec privateKeySpec = new

X509EncodedKeySpec(privatekeybytes);

 KeyFactory keyFactory =

KeyFactory.getInstance(algorithm, provider);

 PrivateKey privatekey =

keyFactory.generatePrivate(privateKeySpec);

 mysignature.initSign(privatekey,random);

 mysignature.update(data);

@SuppressWarnings("MismatchedReadAndWriteOfArray")

 byte[] signatureBytes = mysignature.sign();

 return signatureBytes;

 }

 //verification

 @WebMethod(operationName = "Verification")

 public Boolean Verif(@WebParam(name =

"mypublicKey") byte[] publicKeyBytes, @WebParam(name =

"mydata") byte[] signature, @WebParam(name =

"datatoverif") ByteBuffer data) throws InvalidKeyException,

SignatureException, NoSuchAlgorithmException,

NoSuchProviderException, InvalidKeySpecException,

CertificateException

 {

 CertificateFactory certificateFactory =

CertificateFactory.getInstance("X509");

 Certificate certificate = (Certificate)

certificateFactory.generateCertificate(new

ByteArrayInputStream(publicKeyBytes));

 PublicKey publicKey = certificate.getPublicKey();

 mysignature.initVerify(publicKey);

 mysignature.update(data);

 return mysignature.verify(signature);

 }

}

Regarding the WSDL of the Signature webservice, we used

the Netbeans IDE to generate it automatically based on the

Service Endpoint Implementation of the Signature class

provided above.

7.3 Third step of our methodology

The third step of the methodology consists of adding a

security layer over the webservices using the WS-Security

framework. In this light, a security policy (designed to sign the

header and encrypt the body of the SOAP messages) was

developed and later linked to the WSDL generated in the last

step.

8 Conclusion and future work

The ever growing importance of ICT/Internet in our daily

life, coupled with the surge in cybercrimes, makes it mandatory

to use PKI to secure applications. In fact, because the PKI

provides integrity, confidentiality, authentication and non-

repudiation it has become an essential part of transactions and

application security. However, the integration of PKI features

poses some issues namely the fact that to integrate PKI features

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

21

A PRACTICAL APPROACH TO EXPOSE THE PUBLIC KEY INFRASTRUCTURE FEATURES THROUGH WEBSERVICES

into an application, the programmer needs to find and master

an API that contains PKI primitives developed in the same

programming language as that used for the application in

question. This results in situations where applications

developed in some programming languages where updated and

stable PKI primitives are not implemented cannot be secured

easily using PKI because of the unavailability of an

implementation of primitives in that programming language

unless the programmer develops all the primitives which can

be tedious, long and risky given the complexity of

cryptographic algorithms. In order to overcome this issue, we

propose in this paper an approach whereby the cryptographic

primitives will be exposed as webservice so as to permit their

interactions with any application regardless of the

programming language used to develop them. We choose

JAVA to implement our webservice because of the robustness,

reliability, flexibility and popularity of its environment and

frameworks namely JCA. The approach used, consists of

leveraging JCA cryptographic primitives to webservice using

the JAX-WS framework. The interaction between applications

to be secured and the webservice was later secured using the

WS-Security standard. Future work can include developing

webservice client for every programming language.

References
[1] Carl Ellison, “ Improvements on Conventional PKI

Wisdom " 1st Annual PKI Research Workshop---

Proceedings, 2002.

[2] Mike P. Papazoglou, Willem-Jan van den Heuvel,

"Service oriented architectures: approaches,

technologies and research issues " The VLDB Journal

(2007) 16:389–415.

[3] Marc Novakouski, Soumya Simanta, Gunnar Peterson,

Ed Morris, Grace Lewis,“Performance Analysis of WS-

Security Mechanisms” in TECHNICAL REPORT

CMU/SEI-2010-TR-023 ESC-TR-2010-023, 2010.

[4] Anoop Singhal, "Web Services Security: Challenges

and Techniques " in Computer Security Division, NIST,

1997.

[5] N. Vatra.“Public key infrastructure overview”,

Scientific Studies and Research, Series Mathematics and

Informatics, vol.19, no. 2, pp.471 – 478, 2009.

[6] Heena Kharche, Deepak Singh Chouhan. “Building

Trust in Cloud using Public Key Infrastructure”:

International Journal of Advanced Computer Science

and Applications, vol. 03, no. 03, pp.26 – 30, 2012.

[7] Eugene Xavier.P, Naganathan.E.R."Architecting Digital

Signature/ PKI based Secure Web Based Systems

Through 3-D Probabilistic Software Stability Model

(PSSM)". International Journal of Computer Science

and Network Security. vol.10 no.9, pp 5-11, 2010.

[8] Entrust®,Inc.“Securing Digital Identities &

Information”.http://www.entrust.com/what-is-pki/,

2014.

[8] Brands, S.A. “Rethinking Public Key Infrastructures

and Digital Certificates: Building in Privacy”. MIT

Press, 2000.

[9] K.Schmeh, “Cryptography and Public Key

Infrastructure on the Internet”, 2003.

[10] Wylie Shanks, “Building and Managing a PKI Solution

for Small and Medium Size Business”. SANS Institute

Reading Room Site, 2013.

[11] Oracle Java SE Documentation , "Java Cryptography

architecture” in

http://docs.oracle.com/javase/7/docs/technotes/guides/se

curity/ crypto/CryptoSpec.html.

[12] Oracle Java EE tutorial, "Building webservice with

JAX-WS” in http:// docs. oracle.com/javaee/6/

tutorial/doc/bnayl.html

Biography

Dr. EBOT EBOT ENAW obtained his B.Eng hons

degree from Liverpool University in Electronic

Engineering in 1989. He later obtained an M.Eng degree

in Telecommunication Engineering from The University

of Manchester England in 1991. He returned home

where he was recruited in the University of Yaounde I,

as an assistant lecturer. He pursued his university
studies and obtained a PhD in Computer Sciences from

the National Advanced School of Engineering of the

University of Yaounde I, where he is currently a senior

lecturer. His area of specialization include: computer

network security, cryptography and formal specification

and verification; theorem proving and model checking.

He has published some research articles in international

journals namely Formal model of a group key

agreement protocol. Journal of Computational

Technologies, 7(4):4–20, 2002. In 2006 he was

appointed Director General of the National Agency for
Information and Communication Technologies

Cameroon, a position he occupies till date. Major

activities of the agency include amongst others: securing

the Cameroon cyberspace through three key services:

Computer Incidents Response Team (CIRT), Public Key

Infrastructure (PKI) and Computer Security Audits.

Dr. EBOT EBOT ENAW may be reached at

http://www.entrust.com/what-is-pki/
http://docs.oracle.com/javase/7/docs/technotes/guides/security/%20crypto/CryptoSpec.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/%20crypto/CryptoSpec.html

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

22

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 5

ebotenaw@yahoo.com

DJOURSOUBO PAGOU Prosper obtained his Master

degree in Computer science engineering from the

National Advanced School of Engineering of the

University of Yaounde I in 2009. He holds several

certifications in networking and cybersecurity namely

CCNA, CCNP, CEH, ECSA. In 2013, he was appointed

subdirector of the National Computer Incidents

Response Team (CIRT) of Cameroon, a position that he

occupies till date.

mailto:ebotenaw@yahoo.comw

