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Abstract  
 

Recently, integration of information from multiple sources 
is gaining wide popularity in data analysis. In developing 

computer aided diagnosis (CADx) systems for breast cancer, 

information fusion from the two standard mammographic 

views would serve to mimic the radiologist’s practice of 

analyzing these two views in combination. In this work, dif-

ferent fusion strategies are used to realize two-view CADx 

systems for classification of breast masses. Two different 

databases are used for validation. One of the databases is a 

publicly available database called the digital database of 

screening mammography (DDSM) and the other one is a 

private database. The results demonstrate that the perfor-

mance of a particular fusion strategy depends on the dataset 
under consideration. Further, it is not possible to predict the 

behavior of these fusion strategies before actually testing 

them. Thus, employing an arbitrary benchmark fusion strat-

egy for building a two-view CADx system may not guaran-

tee the best performance improvement when compared to 

single-view systems. This leads to the conclusion that a sys-

tematic approach is necessary prior to fusion to suitably 

transform the datasets under consideration so as to optimize 

fusion in a two-view CADx framework.  

 

Introduction 
 

 Breast cancer is the primary cause of death due to cancer 

in women. Detecting breast cancer in early stages can pre-

vent mortality without the need for mastectomy. Mammog-

raphy is the most effective and commonly used imaging 

modality for screening breast cancer in asymptomatic wom-

en. It has been shown that mammographic screening is ef-

fective in reducing breast cancer mortality rates. However, 

the factors that limit the performance of radiologists in inter-
preting mammograms are the subtle nature of abnormalities 

and complexity of the breast tissue. Double reading by two 

different radiologists has been opted to overcome this prob-

lem. However, the process is time consuming and may result 

in ambiguous diagnostic decisions [1].  

 

 Computer aided detection/diagnosis (CADe/CADx) sys-

tems assess breast images objectively as opposed to the sub-

jective analysis made by the radiologists [3aece]. While 

CADe systems determine suspicious regions in mammo-

grams, CADx systems are used for classifying the abnormal 

regions as benign or malignant [2]. Accurate classification of 

breast abnormalities is a crucial task. Due to the low speci-

ficity of mammograms, the number of benign cases that 

have been misinterpreted as malignant and hence subjected 

to biopsy has been very high. This results in unnecessary 
physical, emotional and financial discomfort to the patients. 

Many studies show that the use of a CAD system as a se-

cond reader can help radiologists in improving the accuracy 

of breast cancer detection and diagnosis [3]. 

 

 A routine mammographic examination involves recording 

two standard views of the breast. These are the mediolateral 

(MLO) view, which is a side-to-side view and the 

craniocaudal (CC) view, which is a head-to-toe view. Radi-

ologists usually read both views simultaneously to arrive at a 

decision. Bassett et al. [4] compared single view and two-
view mammographic examinations which were interpreted 

by experienced radiologists. The authors reported that the 

number of call-back examinations reduced with two-view 

examinations. Blanks et al. [5] and Hackshaw et al. [6] ana-

lyzed the impact of two-view examinations on mammo-

graphic screening and reported that it improved the cancer 

detection rate. 

 

  Motivated by this, several researchers have worked to-

wards the development of CADx systems using two mam-

mographic views for classification of microcalcification 

clusters (MCCs) [7], [8], [9] and masses [10], [11] as benign 
or malignant. All these CADx systems have employed dif-

ferent decision-level and/or feature-level fusion strategies to 

combine information from the two views. Various fusion 

strategies employed in state-of-the art two-view CADx sys-

tems are listed in Table 1. Decision fusion involves merging 

of local decisions based on individual sources. Decision lev-

el fusion may be either soft decision fusion (centralized data 

fusion) or hard decision fusion (distributed decision fusion). 

In the former, information is derived from multiple feature 

sets and integrated directly into a final decision. In the latter, 

the individual decisions are first derived based on different 
feature sets and then combined into a global decision. On the 

other hand, feature fusion involves extraction of features 
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from different data sources followed by merging of these 

feature sets [12]. Decision level fusion may be either soft 

decision fusion (centralized data fusion) or hard decision 

fusion (distributed decision fusion). In the former, the indi-

vidual decisions are first derived based on different feature 

sets and then combined into a global decision. In the latter, 

information is derived from multiple feature sets and inte-

grated directly into a final decision [13]. Decision fusion is 

advantageous when multiple sources of information are un-
correlated, whereas feature fusion is appropriate when the 

sources are correlated [12].  However, due to the fact that 

different sources of information usually have correlated and 

uncorrelated components, these fusion strategies are sub-

optimal. This means that the dataset involved in the training 

process solely determines the performance improvement that 

can be achieved by a given fusion technique over the single-

view systems. No single fusion technique is guaranteed to 

yield superior performance consistently and universally. 

This fact has been demonstrated in this work in the context 

of classification of masses. This is an especially challenging 

task due to wide range in size, shape and contrast of masses 
[14]. Typically, benign masses are round or oval in shape 

and have a well-circumscribed boundary; on the other hand, 

malignant masses are characterized by irregular shape and 

spiculated boundary. Nevertheless, in many instances equiv-

ocal cases might be encountered. Examples include 

spiculated benign masses and well-circumscribed malignant 

tumors [15].  

 

 In this work, the performances of single-view CADx sys-

tems and two-view CADx systems based on different 

benchmark fusion strategies have been compared using two 
different databases. In section 2, the materials and methods 

used in the work have been described. In Section 3, the re-

sults and discussion have been presented. In section 4, the 

conclusion and future directions have been provided.   

 

Materials and Methods 
  

The flow of the work is shown in Fig. 1. The details of the 

two databases used in this work are as follows. The first one 
is a widely used public database called the digital database 

for screening mammography (DDSM) from the University 

of South Florida [16]. A total of 104 pairs of MLO and cor-

responding CC images are used for the study, out of which 

36 are benign and 68 are malignant. The other database used 

is a private database comprising 53 pairs of MLO and CC 

images collected from a private hospital. Out of these imag-

es, 37 are benign and 16 are malignant. In the DDSM data-

base, radiologists have described and assessed suspicious 

masses using breast image-reporting and data system (BI-

RADS) descriptors. In the private database, the ground truth 
related to diagnostic findings and nature of the masses have 

been provided by expert radiologists. 
Table 1. Fusion Techniques Used in Existing Work 

S.No. Approach Level of fusion 

1 Maximum rule [7], [10], [11] Soft decision 

fusion 

2 Minimum rule [10], [11] Soft decision 

fusion 

3 Sum rule [7], [8], [10], [11] Soft decision 

fusion 

4 Product rule [11] Soft decision 

fusion 

5 Linear discriminate Analysis 

(LDA) [11]  

Soft decision 

fusion 

6 OR rule [9] Hard decision 

fusion 

7 Serial [9], [11] Feature fusion 

8 Parallel [9], [11] Feature fusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.  Schematic of the work flow 
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(ROIs) containing mass regions marked by the radiologists. 

The cropped ROIs are then subjected to pre-processing fol-

lowed by segmentation of masses and feature extraction. 

(I) Pre-processing 

 Mammograms are predominantly affected by quantum 

noise which results in poor resolution of the acquired image. 

Hence denoising is an essential step in processing a mam-

mogram. Further, the subtle nature of lesions and the low 

contrast of mammograms necessitates enhancement of 
mammograms prior to segmentation. Denoising and subse-

quent enhancement of mammographic images could im-

prove the accuracy of detection of early signs of breast can-

cer [1], [14]. In this work, two-dimensional (2D) median 

filter with a 3×3 mask is employed for denoising the ROIs. 

A median filter is an order-statistic, non-linear smoothing 

filter which ranks the pixels of the image area encompassed 

by the filter and replaces the center pixel value of the image 

by the value determined by the ranking result [17]. The ROIs 

are subjected to contrast limited adaptive histogram equali-

zation (CLAHE) for enhancement. In adaptive histogram 

equalization (AHE), a pixel’s intensity is transformed to a 
value proportional to the pixel intensity’s rank in the histo-

gram of a local region. CLAHE differs from AHE in that a 

user-specified maximum is imposed on the height of the 

local histogram so as to reduce over-enhancement of noise 

and edge shadowing effect [18]. 

(II) Segmentation 

  Detection of masses in a mammogram is a non-trivial task 

due to the complex nature of the breast tissue. The difficulty 

of segmentation increases for early lesions and/or dense tis-

sues.  An adaptive thresholding algorithm [19] based on 

wavelet analysis is used to perform segmentation of masses 
in the ROIs. First, the preprocessed image is subjected to a 

two-stage Daubechies-10 (Daub-10) wavelet transform. A 

coarse segmentation using histogram-based adaptive global 

thresholding is performed on the LL sub-band obtained as a 

result of first stage wavelet analysis of the mammogram 

image. Morphological enhancement of the LL sub-band ob-

tained after the second stage of wavelet decomposition is 

performed using tophat filtering.  The coarse segmented 

output and the outcome of morphological enhancement are 

combined using convolution. Following this, finer segmenta-

tion is performed using a window-based adaptive local 

thresholding on the combined result to yield the final seg-
mented output. Here, the role of coarse segmentation is to 

yield a rough representation of the suspicious region’s loca-

tion. This is further improved upon by the finer segmenta-

tion to yield more precise results. Original images of a sam-

ple ipsilateral mammogram pair, the manually cropped ROIs 

and the corresponding segmented outputs are shown in Fig. 

2 for the DDSM database and Fig. 3 for the private database.  

(III) Feature Extraction 

 To distinguish a malignant mass from a benign one, the 

internal luminance structure as well as the geometry of the 

mass is important. Texture features represent the luminance 
characteristics of a mass, whereas shape features reflect its 

geometrical characteristics. A total of 33 features [20], [21], 

[22] listed in Table 2, comprising 14 texture features (f1 - f14) 

and 19 shape features (f15 - f33) are extracted from the seg-

mented masses.  The texture features f2 through f14, called 

Haralick’s features are computed from gray-level co-

occurence matrix (GLCM) which is a measure of the spatial 

relationship of the gray levels in a mass. The remaining tex-

ture and shape features are calculated directly from the mass. 

 

                                                     
(a)                  (b)                 (c) 

     

                                           
(e)                  (f)                 (g) 

Figure 2.  DDSM database: (a) Original MLO image, (b) MLO 

ROI, (c) Segmented output for MLO, (d) Original CC image, 

(e) CC ROI, and (f) Segmented output for CC 

 

                                                                                     
(a)                  (b)                 (c) 

     

                                           
(d)                  (e)                 (f) 

Figure 3.  Private database: (a) Original MLO image, (b) MLO 

ROI, (c) Segmented output for MLO, (d) Original CC image, 

(e) CC ROI, and (f) Segmented output for CC 

 

 

Table 2. List of Shape and Texture Features 

Texture features Shape features 

f1:Entropy of the segmented 

mass 
f15:Area 

f2:Contrast f16:Perimeter 

f3:Correlation f17:Mean radius 

f4:Angular second moment  
f18:Standard deviation of 
radius 
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f5:Entropy f19:Skewness of radius 

f6:Sum of  squares  f20:Kurtosis of radius 

f7:Sum average f21:Circularity 

f8:Sum entropy f22:Roughness 

f9:Sum variance 
f23:Long axis to short axis 

ratio 

f10:Difference entropy f24:Depth-to-width ratio 

f11:Difference variance f25:Zero-crossing 

f12:Inverse difference mo-

ment 
f26:Chain coding 

f13, f14:Information measures 

of correlation  
f27-f33:Hu’s moments  

 

B. Information fusion 
 

 Let i = 1 and i = 2 represent the MLO and CC sources, 

respectively. The raw feature vector fi extracted from each 

of these sources is subjected to principal component analysis 

(PCA) for dimensionality reduction. The goal of PCA is to 

find a set of new attributes called principal components such 

that they are linear combinations of the original attributes, 

orthogonal to each other and capture the maximum amount 

of variation in the data. Often the variability of the data can 
be captured by a relatively small number of principal com-

ponents and hence PCA can achieve high dimensionality 

reduction with usually lower noise than the original patterns. 

Each of the resulting reduced-dimension vector xi is used to 

train a support vector machine (SVM) classifier separately. 

SVM is a supervised machine learning algorithm that is used 

for pattern recognition. Using a set of examples with known 

classes, SVM first builds a training model. This model is 

then used to predict the class of a new case. For building the 

model, SVM determines a separating hyperplane called 

maximum margin hyperplane such that the distance from the 
hyperplane to the closest training points on either side is 

maximized. In addition to performing linear classification, 

non-linear classification problems can also be efficiently 

solved by SVM. In such cases a non-linear transformation is 

used to map the data vector into a higher dimensional space 

where the data becomes linearly separable. SVM achieves 

this using a non-linear kernel function to perform the map-

ping implicitly. In this work, radial basis function (RBF) 

kernel is employed for this purpose. PCA and SVM have 

been widely used and shown to be effective for breast cancer 

diagnosis [23]. The outputs of each of the classifiers are the 
posterior probabilities P(C1|xi), P(C2|xi) and the hard deci-

sion Di. Here, C1 and C2 represent the two classes, malignant 

and benign, respectively. In this way, single-view systems 

based on MLO and CC information are realized separately.  

 Following this, all fusion techniques employed in state-of-

the-art two-view CADx systems listed in Table 1 are ex-

plored. Apart from these schemes, three additional fusion 

schemes, namely, weighted sum rule and weighted product 

rule (soft decision fusion schemes) and the AND rule (hard 

decision fusion) are also implemented. All these fusion 

schemes are explained below in the context of combining an 

arbitrary number of sources, say, N. Letting N = 2 will make 

these fusion schemes appropriate for the problem under con-

sideration for combining MLO and CC information.  

(I) Soft Decision Fusion Schemes 

 These schemes make use of the posterior probability esti-

mates of the single-source classifiers, to arrive at a final de-

cision. 

(i) Maximum rule 
According to maximum rule, the final decision D_max, i.e., 

the class to which the input pattern is assigned is given by 

(1).  argmax max | ,  1.. ;  1, 2max j i
j i

D P C x i N j   (1) 

 (ii) Minimum rule 

According to the minimum rule, the final decision D_min is 

defined as in (2). 

     
1

1
arg max | ,    1, 2

N

sum j i
j

i

D P C x j
N 

 
  

 
  (2) 

(iii) Sum rule 

The final decision D_sum of the sum rule is given by (3). 

     
1

1
arg max | ,    1, 2

N

sum j i
j

i

D P C x j
N 

 
  

 
  (3) 

(iv) Weighted sum rule 

This approach is a slight variation of the sum rule and the 

final decision D_wsum is determined by (4). 

     
1

arg max | ,    1, 2
N

wsum i j i
j

i

D w P C x j


 
  

 
  (4) 

Here wi is the weight associated with the ith classifier such 

that 

1

N

i

i

w


  is equal to unity. The weighted sum rule is de-

signed such that it can handle the imbalance in the accuracy 

of the classifiers. In this work wi is chosen according to (5).     

   

1

,   1..i
i N

ii

acc
w i N

acc


 


 (5) 

Here acci is the validation accuracy of the Nth classifier. 

(v) Product rule:  

According to the product rule, the final decision Dprod is ex-

pressed as in (6). 

      
1

1

arg max | ,   1, 2
N N

prod j i
j

i

D P C x j


 
  

 
 (6) 

(vi) Weighted product rule: This strategy is a modified ver-

sion of the product rule with the final decision Dwprod being 

determined as in (7). 

      
1

1

arg max | ,     1, 2i

N
w

wprod j i
j

i

D P C x j


  (7) 

Here also wi is chosen according to (5). 

(vii) LDA fusion: 



International Journal of Advanced Computer Technology (IJACT)        
ISSN:2319-7900 

43 

COMPARISON OF FUSION SCHEMES FOR TWO-VIEW ANALYSIS USING MAMMOGRAMS 
 

In this fusion technique, the posterior probabilities of all the 

single source systems are concatenated to result in a vector 

fclass as given by (8).  

         1 1 1 2 1[ | ,  | ,..,   | ]class Nf P C x P C x P C x (8)    

This vector is given as input to a LDA classifier. The hard 

decision output of the LDA classifier for the input fclass  is 

considered as the final decision Dclass. 

(II) Hard Decision Fusion Schemes 

In these schemes, the hard decisions of single-source sys-

tems are used to arrive at the final decision. 

(i) OR rule: In this approach, the final decision Dor is ob-

tained by performing logical OR operation on the hard deci-
sions as given by (9): 

     1 2or ND D D D    (9)  

(ii) AND rule: Here, the final decision Dand is arrived at by 
performing logical AND operation on the hard decisions and 

is given by (10): 

     1 2and ND D D D    (10)  

2.2.3. Feature Fusion Schemes 

i) Serial fusion 

In serial fusion, the raw feature vectors of all sources are 

concatenated to result in the feature vector f_con as shown 

in (11): 

    1 2( [ ,  , . ])con Nf f f f   (11)  

The concatenated vector f_con is then subjected to PCA for 

dimensionality reduction, resulting in the reduced vector 

x_con. This feature vector xcon is input to a RBF-SVM clas-

sifier, which outputs the hard decision Dcon. 

(ii) Parallel fusion 

A feature vector favg is constructed by averaging MLO and 

CC features as given in (12): 

     1 2 /avg Nf f f f N    (12)  

It is then subjected to PCA for dimensionality reduction, 

yielding xavg. This feature vector xavg is given as input to 

RBF-SVM classifier, which outputs the hard decision Davg. 

 

 

 
Results and discussion 
 

 For all the systems, a nested two-level, k-fold cross valida-

tion strategy (with k = 10) is employed, wherein the inner 

level is used for model selection and the outer level is used 

for performance evaluation. In k-fold cross-validation, the 
complete set of observations is randomly partitioned into k 

equal size subsamples. In each fold, k-1 groups are used for 

training and the remaining group for testing. This process is 

performed k times, such that each of the k groups is used 

exactly once for testing the model. As all the samples are 

involved in testing the model the estimation of the classifier 

performance is unbiased. While the testing is performed in 

the outer level, validation is performed in the inner level, 

where the training set in each fold is subjected to a 10-fold 

cross validation for choosing the optimum parameters of the 

model for that fold. These free parameters include the SVM 

parameters c and γ as well as the number of principal com-

ponents that are retained for dimensionality reduction. An 

exhaustive grid search is employed for parameter selection. 

The parameters that best capture the boundaries between the 

two classes of lesions are chosen as optimal parameters. 
During testing, the classifier is used to predict the labels of 

the independent test cases in each fold using the optimized 

parameters for the respective fold. The testing process is 

repeated for all 10 folds. 

 The area under the receiver operating curve (AUROC) is 

used as the metric for evaluating the performance of various 

systems. The receiver operating curve (ROC) is a plot of true 

positive rate (TPR) along the y-axis and false positive rate 

(FPR) along the x-axis for different decision thresholds in a 

binary decision problem, where TPR and FPR are given by 

(13) and (14), respectively: 

       
 

TP
TPR Sensitivity

TN FP
 


  (1) 

1   
 

FP
FPR Specificity

TN FP
  


  (2) 

An ideal ROC curve would start at (0,0), move verti-

cally upward to (0,1) and then horizontally to (1, 1). The 

AUROC derived from the ROC plot is considered to be a 
good measure that summarizes the test accuracy. It can as-

sume a value that ranges from 0 to 1. The closer its value is 

to 1, the better is the diagnostic performance of the test.   

The AUROC is computed for various single-view and 

two-view (fusion-based) systems for the DDSM database as 

well as the private database. These values are tabulated in 

Table 3 for the DDSM database. It can be observed from 

Table 3 that all fusion schemes outperform the single-view 

systems in terms of AUROC. The parallel feature fusion 

scheme yields the best performance among all systems. It 

can be seen that this scheme outperforms the single-view 
systems by at least 6% and at most 8%. In Table 4, the AU-

ROC values for the private database are compared. It can be 

observed from the table that all fusion schemes except the 

LDA fusion outperform both the single-view schemes. The 

LDA fusion performs better than only the MLO system and 

not the CC system. Also, unlike the DDSM database, the 

weighted sum rule demonstrates the best performance when 

compared to all other systems. The performance improve-

ment of this scheme is observed to be at least 3% and at 

most 6% when compared to single-view systems. 

 Two observations are worth mentioning from the above 

analysis: 
 1) A fusion scheme which yields an improved performance 

when compared to single-view systems for one dataset need 
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not necessarily outperform single-view systems in the case 

of other datasets. 

 

Table 2. Comparison of AUROC of Various Systems for 

the DDSM Database 

System AUROC  

MLO 0.7403±0.0483 

CC 0.7300±0.0492 

Maximum rule 0.7410±0.0482 

Minimum rule 0.7720±0.0454 

Sum rule 0.7779±0.0448 

Product rule 0.7846±0.0442 

OR rule 0.7726±0.0454 

AND rule 0.7846±0.0442 

Weighted sum rule 0.7801±0.0446 

Weighted product rule 0.7839±0.0442 

LDA fusion 0.7488±0.0476 

Serial fusion 0.7689±0.0457 

Parallel fusion 0.7883±0.0438  

 

Table 3. Comparison of AUROC of Various Systems for 

the Private Database 

System AUROC  

MLO 0.7755±0.0757 

CC 0.7487±0.0786 

Maximum rule 0.7907±0.0738 

Minimum rule 0.7795±0.0752  

Sum rule 0.7952±0.0732 

Product rule 0.7889±0.0740 

OR rule 0.7963±0.0731 

AND rule 0.7889±0.0740 

Weighted sum rule 0.7974±0.0729 

Weighted product rule 0.7931±0.0735 

LDA fusion 0.7538±0.0781 

Serial fusion 0.7856±0.0745 

Parallel fusion 0.7967±0.0730 

MLO 0.7755±0.0757 

 

2) A fusion scheme that demonstrates the best performance 

when compared to single-view systems and other two-view 

systems for one dataset need not necessarily serve as the best 

for other datasets. Benchmark fusion techniques are thus 

sub-optimal and arbitrary choice of a particular fusion 

scheme might not yield the expected best performance. 
 

Conclusion and Future Directions 
 

 The performance of several benchmark fusion schemes 

have been investigated for combining information from 

MLO and CC views of the mammogram for classification of 

masses. Two different databases (the publicly available 

DDSM database and another private database) have been 

involved for the comparative analysis. The analysis demon-
strates that the performances of the schemes depend largely 

on the dataset used and their behaviour cannot be predicted 

before they are actually tested on a given dataset. One possi-

ble direction in the search of an optimal fusion technique is 

to make use of the fact that feature fusion yields maximum 

benefit when the features to be fused are highly correlated. 

Thus a suitable transformation like canonical correlation 

analysis (CCA) that maximises the correlation between two 

multivariate datasets may be applied to the MLO and CC 

datasets prior to feature fusion. This technique has the poten-
tial to provide an optimal performance irrespective of the 

data to be fused.  
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