
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

10

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 2, NUMBER 6,

MODELLING AND ANALYSING DYNAMIC ACCESS

CONTROL POLICIES USING ATOMIC ACTIONS

Hassan Qunoo, Department of Computer Engineering, Islamic University of Gaza,

Palestine ; Mark Ryan, School of Compute Science, University of Birmingham, UK

Abstract

This paper presents, X-policy, a knowledge-based verifica-

tion tool that can analyse the system vulnerabilities where

the attackers can act as a coalition, share information and

collaborate to achieve the attack. We present a policy lan-

guage that is able to express dynamic access control policies

and a corresponding query language. We demonstrate that

X-Policy is expressive enough to model collaborative con-

ference management systems. We model the EasyChair con-

ference management system and we analyse three security

properties of EasyChair using our model. Finally, we com-

pare our results with related work and we discuss the ad-

vantages and the limitations of our approach.
.

Introduction

 Web-based collaborative systems like social networking

websites, conference reviewing systems, document devel-

opment tools, and application processing systems are all

examples of central systems that give users the ability to

create and control access to their data. Access to data in the-

se systems is dynamic; it depends on the state of the system

and its configuration. Large conference management sys-

tems like iChair[1], WSAR[12], HotCRP[13] and Easy-

Chair[23] are widely used to manage academic conferences.

However, the size and the complexity of these systems make

it hard to analyse their policies and their security properties.

The policy of those systems are designed to preserve the

system security and serve their desired purpose. Systems,

however, can still fail some basic security properties [19,21].

Users can compromise the system policy and its security

properties by interactions of rules, co-operations between

agents and multi-step actions.

 For example: consider the conference paper review system

EasyChair. We build EC, a model of our understanding of

EasyChair derived from our experiments and its documenta-

tion as we can see in Section 4. EC consists of a set of agents

and a set of papers to be reviewed by the PC members.

Each agent can act in the role of program chair, program-

committee (PC) member, paper’s author or a subreviewer.

For example the following policy rules are a subset of the

EC policy:

1. PC chair can assign PC members to review a paper.

2. PC members can invite another agent to sub-review a pa-

per that is assigned to them. Sub-reviewers may accept or

reject the invitation.

3. Sub-reviewers send their reviews (outside the system) to

the reviewer.

4. Once the reviewer receives the paper review, the PC

member can submit the review to the system.

 The purpose of these rules is to collect a number (usually

between 3 and 4) of reviewer’s opinions of a submitted pa-

per. These opinions determine whether a paper should be

accepted or rejected.

For these rules to be fair, no single reviewer should be able

to determine the outcome of a paper reviewing process by

writing all three reviews of that paper. However, as we can

see in the following strategy the intention of these rules can

be breached by interaction of rules to allow a single user to

write all the three reviews of a paper. Our analysis of the

system only requires one agent to be acting intentionally to

circumvent the system as we can see in the following strate-

gy:

1. Chair assigns three PC members, Alice, Charlie and Bob,

to review a paper.

2. Alice assigns Eve as her sub-reviewer.

3. Bob assigns Eve as his sub-reviewer.

4. Charlie assigns Eve as his sub-reviewer.

5. Eve accepts all three roles and send Alice, Charlie and

Bob three similar reviews.

6. Alice, Charlie and Bob receive Eve’s reviews and submit

it to the system.

 Eve manages to write all three paper reviews while all the

agents still comply with the system rules.The reviewers can-

not read other reviewers’ names in the anonymous reviewing

setting. This attack will succeed on various configuration but

it might go undetected in the case of anonymous reviewing.

The interaction of rules in the live system can cause an un-

foreseen behaviour which highlights the need to model the

dynamic aspect of these systems and analyse their security

properties in a formal way.

 In this paper we present a simple yet expressive modelling

language, called X-Policy, to model large web-based collab-

orative management systems. To be able to model these dy-

namic systems, the X-Policy modelling language allows us

to specify systems as a set of atomic read or write actions.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

11

MODELLING DYNAMIC ACCESS CONTROL POLICIES FOR WEB-BASED COLLABORATIVE SYSTEMS

Action executing policy is specified as preconditions which

the user has to satisfy to execute the action. Executing an

action updates the system state which might, as a result,

change the execution permissions. We use EC as a case

study for our language. We model EC in X-Policy and we

reason about three security attacks on EasyChair using our

model.

 In Section 2 we discuss the related work. In Section 3, we

present our modelling language X-Policy together with its

formalism. We detail in Section 4 the process of construct-

ing the EC model. We also explain how we can express EC

in X-Policy formalism. We introduce a selection of EC ac-

tions with their execution permissions statements which we

use to prove the security attacks on EC and EasyChair in

Section 4.3 as our case study. The conclusion and ideas for

future work are in Section 5.

Related Work

Recently, there has been a plethora of languages and

logics[2,3,4,5,6,7,8,10,11,14,15,16,17,18] to express access

control policies. These logics and languages try to solve var-

ious issues arising from decentralisation.

DeTreville was the first to propose a Datalog based securi-

ty language called Binder [8]. Since then Datalog has be-

come the foundation of recent logic-based access control

policies like the RT family [16] and SecPAL[2]. Researchers

are mainly attracted to Datalog[20] as they can start from a

tractable and expressive language with the advantage of de-

ducing trust relations effectively based on well developed

logic programming concepts and deductive databases. Un-

fortunately, Datalog is stateless. Inherently, the ability of

datalog-based languages to express dynamic access control

policies is restricted. Cassandra[6], a Datalog-based lan-

guage, has a separate mechanism to maintain the authorisa-

tion state by inserting and retracting “hasActivated” facts

according to the policy rules.

Gurevich et. al. introduced Distributed Knowledge Au-

thorisation Language DKAL[10] and DKAL2[11] that ex-

tend SecPAL’s expressiveness. However, Cassandra,

SecPAL, DKAL, DKAL2 and other authorisation languages

lack the ability to express the dynamic aspect of access con-

trol where policies depend on and update the system state

like those we have in EC. They, also, cannot express the

effect of actions as part of the language and it has to be hard-

coded in an ad-hoc way.

More recently, SMP[5] and its successor DyNPAL[4] aim

to specify dynamic policies with the ability to specify the

effect of executing these actions. DyNPAL allows condi-

tional bulk insertion and retraction of authorisation facts

with transactional execution semantics (either all or none are

committed). However, DyNPAL’s declarative nature and

minimalistic approach make it hard to follow the control

flow of the actions. Also the lack of parameter typing does

not allow us to establish the relation between the agent who

can execute an action and the action itself. They tend to fo-

cus on answering the question “under what conditions can an

action be executed?” rather than “under what conditions can

an agent execute an action?”. This is indeed necessary to

enable us to define agent coalitions and establish which

agent is executing an action. It allows us to detect attacks

where we are interested in who can execute a set of actions

rather than whether a set of actions can be executed regard-

less of the actors involved.

RW framework [24], a precursor of X-Policy, can analyse

the consequences of multi-agent multistep actions by per-

forming temporal reasoning. The access control verification

software suite Margrave [9] addresses the policy change-

impact problem using Model-Checking techniques to com-

pute the changes between two policy files written in

XACML. RW and Margrave are both model checking based

frameworks. However, RW and Margrave do not allow us to

express actions with multiple assignments needed to pre-

serve the integrity constraints of the modelled system.

Lo et. al.[19,21] analyse the security features of Web

Submission and Review Software WSAR[12]. They study

the security properties like the system password strength and

storage, its resistance to SQL injection, forced browsing and

browser caching. However, their analysis does not include

the access control policy of the system. To the best of our

knowledge, this is the first paper to model and analyse dy-

namic access control policy for a large web-based collabora-

tive system with atomic actions like EasyChair.

X-Policy Modelling Language
A. Syntax

Let T be a set of types, which includes a special type

Agent for agents, also let P be a finite set of predicates. Each

n-ary predicate has a signature t1 tn where ti

 T. For example, in the case of a conference review system,

T can include Paper, and P can include the predicate

 Author : Agent Paper .

The full list of predicates used in EC is included in Section

4.2. A different model will require another list of predicates.

We assume a set of variables V, each with a type. If p P

and is a sequence of variables of the appropri-

ate type, then p() is an atomic formula.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

12

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 2, NUMBER 6,

 Actions. These definitions allow us to define a set of ac-

tions Actions which includes read actions and write actions.

A read action allows the user to access the truth value of an

atomic formula and is of the form

Action Actionname() :-
{

 return p();
}

where p P and the variables in occur in . A write ac-

tion allows the user to change the truth values of an atomic

formula and is of the form

Action Actionname() :-
{

 writebody

}

where writebody is an expression formed from the following

BNF:

writebody ::= assignment | for (v : t) { writebody } |

writebody writebody

where v is a variable of the type t and an assignment is of the

form p() := ; or p() := ;.

We allow an atomic formula p() to occur at most once at

the left of ":=" in an action to avoid ambiguity in computing

the action effect. The assignment statements within the same

action can be written in any order. All free variables in an

assignment must be declared either in a surrounding for-

statement or in Actionname statement. Intuitively, a for-

statement in an action is a ‘macro’ that is interpreted as mul-

tiple assignment statements.

 Execution Permissions. An action permission statement

exec(act,u) defines the conditions for an agent u Agent to

execute an action act Actions. A permission statement is

of the form

exec(Actionname(), u) formula

where formula is a formula which is defined using atomic

formulae and logical connectors: (negation),

^ (conjunction), (disjunction), (implication), and

(existential and universal quantification over variables of the

appropriate type). The variables that occur in formula are

required to be either in or u. The formula defines the con-

ditions for agents to execute these actions as functions on its

state.

 B. Informal Semantics

 A model M defines, for each type t, a finite set of individ-

uals . We define = as the set of all the

individuals defined by M. We assume = ; when-

ever t1 and t2 are distinct. If p is a predicate and is a se-

quence of individuals of the appropriate type then p() is a

ground atomic formula. State m of the model M is a valua-

tion of the ground atomic formulae. In the rest of this paper

we identify each state with the set of ground atomic formu-

lae which are true in the state.

 Do not include headers, footers or page numbers other

than as already found in this manuscript. Please note that the

headers, footers or page numbers are different for the first

page, and the rest of the even and odd pages. Actual page

numbers and other running heads will be modified when the

publications are assembled.

 For loops. We describe the semantics of for-loops in the

context of a model M, with the set of indi-

viduals in M of the type t. Let act Actions. We then trans-

form each forstatement to its equivalent multiple assignment

statements. For example the following for-statement:

for (v : t) {p(,v,) := ; }

is in the write action act() where and are subse-

quences of other parameters. This forstatement is trans-

formed to:

p(, ,) := ;

p(, ,) := ;

We apply this process repeatedly until we have no for-

statement in our action. We call the resulted loop-free ac-

tion: act*().

 Effect of Actions. Let act Actions and a sequence of

individuals of the appropriate type for act. We define the

result of running the instantiated action act(). We first

compute act*(), as above. We then apply the functions:

effect
+
() and effect

-
() which compute the positive and the

negative effect of the instantiated loop-free action act*()
as following:

effect
+
(act*()) = {p() | p():= occurs in act*(

effect
-
(act*()) = {p() | p():= occurs in act*(

where all the values of are members of .

The action effect then will be applied to the model state.

Executing a write action will transfer the model from a pre-

execution state mi in which the action is executed at to a

post-execution state mi+1. It adds the set of ground atomic

formulae which are updated to true to the state mi. It also

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

13

MODELLING DYNAMIC ACCESS CONTROL POLICIES FOR WEB-BASED COLLABORATIVE SYSTEMS

subtracts the set of ground atomic formulae that are updated

to false from the state mi. All the other ground atomic formu-

lae in the state mi will remain unchanged. Let’s say that the

model M is in the state mi when an agent u executes the write

action act(), then the model will be transformed from the

state mi to the state mi+1 where mi+1= mi \ effect
-
(act*())

effect
+
(act*()). Note that effect

-
(act*()) ef-

fect
+
(act*())= . Therefore, adding and subtracting can be

done in any order. Read actions do not change the model

state. However, read actions can be part of an attack strategy

as we will see in Section 4.3.

Modelling EasyChair Conference

Management System

A. Modelling conventions for EasyChair

system

 In this section, we discuss a number of modelling conven-

tions we have followed in constructing EC.

The model EC is based on our understanding of a fragment

of EasyChair. We restrict EC to a single conference system.

These conventions can be adopted to model other web-based

systems.

 System policy as set of read and write actions. Using X-

Policy, we specify EC as X-Policy actions which can be

either write actions that change the state of the system or

read actions that give the user/agent knowledge about the

state of the system. A read action is allowed to retrieve the

value of a single model variable. Actions cannot read and

change the state of the system at the same time. In Easy-

Chair, there are some cases in which a mix of read and write

operations are executed in a single request. When a PC

member requests an agent to subreview a paper and before

the agent accepts or rejects the subreviewing request, the

agent can read the submission
1
. The fact that the agent has

read the submission is recorded. This case is modelled in EC

as two separate actions, reading the submission and record-

ing the read. We link the two actions by allowing the sub-

reviewer to read the submission if she recorded the read in

advance. This is a sensible heuristic for modelling web-

based systems. We also restrict our model to the system

states and do not consider any possible logging system as

part of our model.

System read operations that return multiple system values.

We model each of these operations W as a set of

tions . Each action Wi returns one of the values

returned by W. The execution rights of Wi are the same as

W. For example: EasyChair operation ShowReviews(p)

which will return all the reviews on the paper p is modelled

as the set of the read actions ShowReview(p,a1)

ShowReview(p,an) which returns the review of agent a1 an

on paper p.

 Modelling EasyChair “log in as another pc member”

functionality. In EasyChair, the system allows the PC chair

to act on behalf of another PC member using “log in as an-

other pc member”. For example a PC chair can submit a

review for a paper assigned for another PC member to re-

view. The actions executed on the PC member’s behalf are

indistinguishable from the ones that are executed by the PC

member herself. Nevertheless, EasyChair restricts the PC

chair from changing the PC member account details or ac-

cessing/editing her sub-reviewing requests. We model these

actions in EC by conjoining the conditions agent u has to

satisfy to act as another PC member - in this case being a

chair - and the conditions that the PC member has to satisfy

to execute that action. One might also consider using rela-

tions like “CanActAs”, as in [2,11]. However, when we say

A CanActAs B then we mean that A is capable of perform-

ing all the actions that B can perform which is not applicable

in this case.

 Intermediate condition. In some cases, the system checks

some intermediate conditions during an update operation

like validation conditions or maintenance conditions to pre-

serve an integrity constraint. For example, EasyChair insures

that a conflict of interest is respected when a chair assigns

reviewers to a paper. We express these intermediate condi-

tions as execution preconditions. Where the checking opera-

tions reveal a system value by an error message, this value is

readable by the agent requesting the operation.

 Conference configuration settings. We model the confer-

ence configuration settings as 0-ary atomic formulae. The

value of these settings affects the conference permissions

globally. In specifying the system execution policy if the

user can learn about the system configuration settings from

the behaviour of the system even though she cannot read the

settings directly, we consider her to be able to read that vari-

able. In some cases the user might learn partial information

1 This is an intermediate step before deciding to accept or reject the

subreviewing assignment. We decided not to

include it in the case study, for brevity, but it is available in the full

model[22].

about a single configuration variable. For example when the

list of submissions can only be viewed by PC chairs only or

nobody, the PC member learns that she is not allowed to see

the list of the submissions but she cannot distinguish be-

tween the two possibilities. We model this case in EC by

designating a variable that represents the fact that the

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

14

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 2, NUMBER 6,

PCmember can read the list of submissions. The PCmember

can infer the value of that variable by using the system.

B. EC model in X-Policy formalism

 In this Section we express the EC model in X-Policy for-

malism. We define T = {Agent; Paper}. To model relations

between these two types, we need a number of predicates, P,

as follows:

 For a,b of type Agent, p of type Paper, P includes:

Chair-review-en() Review menu is enabled

 for Chair. It enables chair-

 (s) to manage the reviews

 of submitted papers.

Chair-status-en() Status menu is enabled for

 Chair. It enables chair(s)

 to manage the status of

 submitted papers.

PCM-access-reviews-en() PC members can access

 (view) other papers revie-

 ws.

PCM-review-editing-en() PC members can add/

 modify reviews.

PCM-review-menu-en() Review menu is enabled

 for PC members. It ena-

 bles PC members to man

 age paper reviews.

PCM-status-en() Status menu is enabled for

 PC members. It enables

 PC members to manage

 paper status.

Review-assig-enabled() Review assignments ena-

 bled.

Show-reviewer-name() Reviewer’s name is reada-

 ble by other PC members.

Sub-anonymous() Submissions are anonym-

 ous. The name of authors

 are obscured.

Sub-open() Submission system is ope-

 n and accepts new papers.

View-sub-by-chair-permitted() PC chairs can view the list

 of submissions.

View-sub-by-PCM-permitted() PC members can view the

 list of submissions.

View-sub-title-permitted() PC members can view the

 submission title for papers

 not assigned to them.

View-sub-txt-permitted() PC members can view the

 submission text for papers

 not assigned to them.

Author(p,a) Agent a is an author of pa-

 per p.

Chair(a) Agent a is the chair of the

 PC.

Conf-of-interest(p,a) Agent a has a conflict of

 interest with the paper p.

Decided-subrev(p,a,b) Agent b has decided whet-

 her to accept or reject the

 subreviewing request for

 paper p issued by agent a.

PCmember(a) Agent a is a PC member.

Requested-subrev(p,a,b) Agent a has requested age-

 nt b to be his subreviewer

 for paper p.

Reviewer(p,a) Paper p is assigned to PC

 member a for reviewing.

Submitted-review(p,a,b) Agent b’s review of Paper

 p has been submitted by

 agent a.

Subreviewer(p,a,b) Agent b has accepted the

 subreviewing request for

 paper p issued by agent a.

Updated-review(p,a,b) Agent b’s review of Paper

 p has been updated by PC

 member a.

 We now define the set of actions Actions and their execu-

tion permissions using the formula exec(act, u) for each ac-

tion act Actions. The execution permission statements

define whether or not u of type Agent is allowed to execute

such an action and in what state. In the following, we list a

sub-set of EC actions and their permission statements which

are used in our properties analysis in X-Policy:

1. When the review menu is enabled and the submitted

paper is not deleted: (a) A PC chair can read all the pa-

per reviews. (b) A PC member can read a review for a

paper p if she is a reviewer of that paper and has submit-

ted her review. (c) A PC member can read a review for

a paper to which she is not assigned, when PC members

are permitted to access the titles and reviews of submit-

ted papers. She also must have no conflict of interest

with that paper.

 Action ShowReview(p,a,b):-

 {

 return Submitted-review(p,a,b);

 }

 exec(ShowReview(p, a, b), u)

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

15

MODELLING DYNAMIC ACCESS CONTROL POLICIES FOR WEB-BASED COLLABORATIVE SYSTEMS

2. When the review menu is enabled and the submit-

ted paper is not deleted: (a) A PC chair can submit

a review for any paper as himself. (b) A PC chair

can submit a review for a paper as another PC

member using “log in as another pc member” if the

PC member is allowed to submit a review for that

paper. (c) A PC member can review a paper if she

is assigned to review that paper. (d) A PC member

can review a paper to which she is not assigned

when PC members are permitted to access the titles

and reviews of submitted papers. She also must

have no conflict of interest with that paper.

Action AddReview(p,a,b):-

 {

 Submitted-review(p,a,b):= ;

}

 exec(AddReview(p, a, b), u))

3. Given that paper assignments are enabled, a PC

chair can assign/de-assign a submitted paper to a

PC member or a PC chair for reviewing, when she

has no conflict of interest with that paper.

Action AddReviewerAssignment(p,a):-

{

 Reviewer(p,a) := ;

}

exec(AddReviewerAssignment(p, a), u)

4. When the review menu is enabled and the submit-

ted paper is not deleted: (a) A PC chair can request

another agent to subreview any paper. (b) A PC

member can invite another agent to subreview a

paper: (1) if she is the reviewer of the paper or (2) if

the system is configured to give PC members ac-

cess to the paper submission titles and reviews. The

invited agent can decide whether to accept or reject

the reviewing request as long as the paper has not

been withdrawn. A PC member cannot cancel the

subreviewing request but can accept or reject the

request on behalf of the invited agent. Once the de-

cision is made, only the PC member can change the

decision.

Action RequestReviewing(p,a,b):-

{

 Requested-subrev(p,a,b):= ;

}

Action AcceptReviewingRequest(p,a,b):-

{

 Decided-subrev(p,a,b):= ;

 Subreviewer(p,a,b):= ;

}

Action RejectReviewingRequest(p,a,b):-

{

 Decided-subrev(p,a,b):= ;

 Subreviewer(p,a,b):= ;

}

exec(RequestReviewing(p, a, b), u)

 exec(AcceptReviewingRequest(p, a, b), u)

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

16

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 2, NUMBER 6,

 exec(RejectReviewingRequest(p, a, b), u)

 We include the full model of EC at [22].

C. Case Study: Analysis of EC security

properties

 In this Section, we will discuss a number of security is-

sues in EC. We have discovered these issues while using

EasyChair. In each case, we show an attack strategy to

achieve an undesirable state. Each strategy is an execution

sequence of read and write actions which takes the model

from an initial state m0 to a goal state mg. A strategy can be

executed by more than one agent where agents collaborate to

reach the goal. We show that these strategies work on our

model and reach the goal state. We have also tried these at-

tacks on EasyChair and they have succeeded as of the 1
st
 of

September 2009. In the following, we report the results of

each a tack and make some suggestions on how the system

could fix these issues.

 To analyse the system, we have to define a number of in-

dividuals of types Agent and Paper and use these individuals

to define an initial state which we refer to as m0. For our EC

model, we create the following configuration:

1. The system has five agents: Alice, Bob, Eve, Carol and

Marvin. The system has two submitted papers: p1 and

p2. We express the configuration as following: Paper =

{p1, p2} and Agent = {Alice, Bob, Carol, Eve, Marvin}.

2. Alice is the Chair of PC. Bob and Carol are PC mem-

bers. Paper p1 is submitted by the author Marvin while

p2 is submitted by the author Eve. Reviewers’ names

are obscured from each other by enabling the anony-

mous reviewing option. Authors’ names are obscured

from the PC members and the reviewers. The confer-

ence submission is configured in the anonymous sub-

mission mode. The list of submissions can be viewed by

PC chairs only. Non-chairs do not have access to re-

views of papers not assigned to them. In this case, we

choose an up-and-running state of EC to keep our proof

to a minimum. However, we can derive the system from

an earlier state. We express these settings in the follow-

ing X-Policy configuration:

m0 = {Chair(Alice), PCmember(Bob),

PCmember(Caro, Author(p1,Marvin), Author(p2,Eve),

PCM-review-editing-en(),

View-sub-by-chair-permitted(),Chair-review-en(),

PCM-review-menu-en(),

Sub-anonymous(),Review-assig-enabled()}

Now that we have defined the initial state m0, we can

analyse the following properties. Each of these proper-

ties will start from m0 and derive the model using a

strategy Si to reach the goal state
 .

 Property 1: A single subreviewer should not be able to

determine the outcome of a paper reviewing process by

writing two reviews of the same paper. We show that we

can derive an attack against EC involving 4 agents: Alice,

Bob, Carol, and Eve. We explain the attack scenario as a

sequence of actions executed by these agents as follows:

1. Alice acts as chair. She executes the actions:

AddReviewerAssignment(p1,Bob) to assign Bob to re-

view the paper p1. She also executes

AddReviewerAssignment(p1,Carol) to assign Carol to

review the paper p1.

2. Bob and Carol both assign Eve as their sub-reviewer for

paper p1 by executing the actions

RequestReviewing(p1,Bob,Eve) and

RequestReviewing(p1,Carol,Eve) respectively.

3. Eve accepts the two paper subreviewing requests. Eve

then sends Bob and Carol two similar reviews using

AcceptReviewingRequest(p1,Carol,Eve) and

AcceptReviewingRequest(p1,Bob,Eve).

4. Bob and Carol receive Eve’s reviews and submit them

to the system using AddReview(p1,Bob,Eve) and

AddReview(p1,Carol,Eve).

 Note that the names of authors and other reviewers are not

known to the PC members. While we show how Eve can

write two reviews of the paper, the attack can be exploited in

the same way to enable Eve to write all three reviews. The

detailed derivation for this attack on property 1 can be found

in Appendix A

 One possible fix for this attack is as follows. Every time

an agent a invites another agent b to subreview a paper,

EasyChair should check whether agent b has been invited by

another agent to subreview the same paper. We conjoin the

condition d: Agent . Requested-subrev(p, d, b) to the

permission statement exec(RequestReviewing(p,a,b),u). In

this case Carol cannot execute

RequestReviewing(p1,Carol,Eve) as Requested-

subrev(p1,Bob,Eve) is in the previous state.

 Property 2: A paper author should not review her own

paper. As before, we explain the attack scenario as a se-

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

17

MODELLING DYNAMIC ACCESS CONTROL POLICIES FOR WEB-BASED COLLABORATIVE SYSTEMS

quence of actions executed by the agents Alice, Bob and

Eve:

1. Alice acts as Chair and assigns Bob, who is a PC mem-

ber, to review the paper p2 submitted by Eve by execut-

ing the action AddReviewerAssignment(p2,Bob).

2. Bob executes the action

RequestReviewing(p2,Bob,Eve) to assign Eve as his

sub-reviewer as she is a good researcher in the field.

3. Eve accepts the request using

AcceptReviewingRequest(p2,Bob,Eve).

4. Bob submits the review using AddReview(p2,Bob,Eve).

 Note that the names of authors and other reviewers are not

known to the PC members. One possible fix for this attack is

that every time an agent a invites another agent b to

subreview a paper, EasyChair should check whether agent b

is actually an author of that paper. We add the condition

 Author (p, a) to the permission statement

exec(RequestReviewing(p,a,b),u). In this case Bob cannot

execute RequestReviewing(p2,Bob,Eve) as Author(p2,Eve)

is in
 . The detailed derivation for this attack on proper-

ty 2 can be found in Appendix B

 Property 3: Users should be accountable for their ac-

tions. This property is violated in several ways, all of which

involve the use of "log in as another pc member”. For exam-

ple, the system should not allow the chair to submit a review

for a paper as another PC member without making it clear

that it is actually the chair who has submitted the review and

not the PC member. The following attack scenario involves

Alice and Bob:

1. Alice is the chair. She executes

AddReviewerAssignment(p1,Bob) to assign Bob to re-

view the paper p1.

2. Bob submits his review using AddReview(p1,Bob,Bob).

3. Alice reads Bob’s review of paper p1 by executing the

action ShowReview(p1,Bob,Bob).

4. Alice submits a review for the paper p1 as if she is Car-

ol who is a very famous and sought after academic by

executing AddReview(p1,Carol,Carol).

 EasyChair fails this property and allows the chair to read

another reviewer’s review for a paper and then submits a

review for that paper as another PC member without being

detected by the other PC members or the other chairs. This

attack is possible because the system does not register the

name of the user who updated the review. It will appear to

others as if Carol has submitted the review herself. One pos-

sible fix for this attack is for AddReview() to have an addi-

tional parameter. Alice would then need to execute the ac-

tion

AddReview(p,a,b,c) where agent a is the chair acting on

behalf of b who is the PCmember submitting the review

written by agent c. The predicate Submitted-review() also

has to be changed accordingly. In this case, if a chair sub-

mits a review of a paper the system highlights the fact that

the chair is actually the one submitting the review. The de-

tailed derivation for this attack on property 3 can be found in

Appendix C

Conclusion and Future Work

 In this paper we present a modelling language, X-Policy, to

model the dynamic execution permissions of large web-

based collaborative systems. We demonstrate the applicabil-

ity of X-Policy to real-life web-based collaborative systems

like EasyChair. We propose a number of modelling conven-

tions for EasyChair which can be applied to other web-based

systems. The full EC model is available at [22]. It contains

49 actions and permission statements. This is relatively con-

cise given the size and complexity of EasyChair. The way

the system functionality is split into actions is decided by

our understanding of how the system is actually designed.

The ability to specify multi-assignment actions enables us to

maintain the integrity constraint so that, for example, when a

PC-member is deleted, her reviewing assignments are also

deleted. Using X-Policy, we can reason about the security

properties of our model. We presented a case study of three

security properties for EasyChair and described the possible

attacks on these properties as well as ways the system could

be changed to prevent these attacks. We have informed the

developer of EasyChair of our findings.

 The motivation behind X-Policy is to provide a simple

modelling language giving policy designers and system

managers the ability to specify collaborative system policies

like those discussed in the paper, and to reason about their

real-life security properties. X-Policy, with its ability to es-

tablish the relation between an action and the agent who is

executing it, allows us to analyse security properties that

require collaboration between a specific set of agents who

are allowed to act to achieve an attack on the system. X-

Policy’s ability to specify read and write actions also allows

us to reason about pieces of data being read as part of the

attack. These two features distinguish X-Policy from other

dynamic policy specification languages like DyNPAL.

 A direct comparison between the expressiveness of X-

Policy and Datalog-based languages like SecPAL, Cassandra

and others is inappropriate as the latter are designed to solve

a different set of problems, mainly relating to authorisation

in decentralised settings.

 In future work, we would like to model and analyse more

systems. The reasoning about security properties in this pa-

per was performed manually. We plan to develop and im-

plement an algorithm to automate the analysis of these sys-

tems using model checking techniques. Our choice of finite

sets for each type is motivated by our desire to design such a

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

18

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 2, NUMBER 6,

tool. Such a restriction is common in reachability analysis in

access control systems [4,5,9,24]. We also plan to design a

query language that expresses high-level security properties

such as those discussed in our case study. While these prop-

erties can be expressed as reachability goals, other high-level

properties, like property no. 3, require the ability to prove

the observational equivalence between two strategies. For

example, we should be able to query whether actions com-

mitted by the chair acting as a PC member are indistinguish-

able from actions committed by the PC member herself.

Such a query requires the ability to reason about the value

and the readability of state variables during the strategy exe-

cution.

Appendix

A Proof for the attack on property 1

 In the following, we use

Alice:AddReviewerAssignment(p1,Bob) to denote that the

agent Alice executes the action

AddReviewerAssignment(p1,Bob). Starting from m0 we

show how the model state evolves through the attack strate-

gy. At each step, we explicitly list, when appropriate, the list

of ground atomic formulae that has to be absent or present to

execute the following action from the model state:

Alice:AddReviewerAssignment(p1,Bob);

 requires the presence of Chair(Alice),

 PCmember(Bob), Review-assig-enabled().

 requires the absence of Conf-of-interest(p1,Bob).

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Sub-anonymous(),

 Author(p2,Eve), PCM-review-editing-en(),

 View-sub-by-chair-permitted(), Chair-review-en(),

 PCM-review-menu-en(), Review-assig-enabled(),

 Reviewer(p1,Bob)}

Alice:AddReviewerAssignment(p1,Carol);

 requires the presence of Chair(Alice),

 PCmember(Carol), Review-assig-enabled().

 requires the absence of Conf-of-interest(p1,Carol).

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

Author(p1,Marvin), Sub-anonymous(),

Author(p2,Eve), PCM-review-editing-en(),

View-sub-by-chair-permitted(),Chair-review-en(),

PCM-review-menu-en(), Review-assig-enabled(),

Reviewer(p1,Bob), Reviewer(p1,Carol)}

Bob:RequestReviewing(p1,Bob,Eve);

 requires the presence of PCmember(Bob),

 Reviewer(p1,Bob), PCM-review-menu-en().

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Sub-anonymous(),

 Author(p2,Eve), PCM-review-editing-en(),

 View-sub-by-chair-permitted(),

 Chair-review-en(), PCM-review-menu-en(),

 Review-assig-enabled(), Reviewer(p1,Bob),

 Reviewer(p1,Carol), Requested-subrev(p1,Bob,Eve)}

Carol:RequestReviewing(p1,Carol,Eve);

 requires the presence of PCmember(Carol),

 Reviewer(p1,Carol), PCM-review-menu-en().

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Sub-anonymous(),

 Author(p2,Eve), PCM-review-editing-en(),

 View-sub-by-chair-permitted(),

 Chair-review-en(), PCM-review-menu-en(),

 Review-assig-enabled(), Reviewer(p1,Bob),

 Reviewer(p1,Carol), Requested-subrev(p1,Bob,Eve),

 Requested-subrev(p1,Carol,Eve)}

Eve:AcceptReviewingRequest(p1,Bob,Eve);

 requires the presence of

 Requestedsubrev(p1,Bob,Eve).

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Sub-anonymous(),

 Author(p2,Eve), PCM-review-editing-en(),

 View-sub-by-chair-permitted(),

 Chair-review-en(), PCM-review-menu-en(),

 Review-assig-enabled(), Reviewer(p1,Bob),

 Reviewer(p1,Carol),

 Requested-subrev(p1,Bob,Eve),

 Requested-subrev(p1,Carol,Eve),

 Decided-subrev(p1,Bob,Eve),

 Subreviewer(p1,Bob,Eve)}

Eve:AcceptReviewingRequest(p1,Carol,Eve);

 requires the presence of

 Requested-subrev(p1,Carol,Eve).

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Sub-anonymous(),

 Author(p2,Eve), PCM-review-editing-en(),

 View-sub-by-chair-permitted(),

 Chair-review-en(), PCM-review-menu-en(),

 Review-assig-enabled(), Reviewer(p1,Bob),

 Reviewer(p1,Carol),

 Requested-subrev(p1,Bob,Eve),

 Requested-subrev(p1,Carol,Eve),

 Decided-subrev(p1,Bob,Eve),

 Subreviewer(p1,Bob,Eve),

 Decided-subrev(p1,Carol,Eve),

 Subreviewer(p1,Carol,Eve)}

Bob:AddReview(p1,Bob,Eve);

 requires the presence of PCmember(Bob),

 Reviewer(p1,Bob), PCM-review-menu-en(),

 PCM-review-editing-en().

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Sub-anonymous(),

 Author(p2,Eve), PCM-review-editing-en(),

 View-sub-by-chair-permitted(),

 Chair-review-en(), PCM-review-menu-en(),

 Review-assig-enabled(), Reviewer(p1,Bob),

 Reviewer(p1,Carol),

 Requested-subrev(p1,Bob,Eve),

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

19

MODELLING DYNAMIC ACCESS CONTROL POLICIES FOR WEB-BASED COLLABORATIVE SYSTEMS

 Requested-subrev(p1,Carol,Eve),

 Decided-subrev(p1,Bob,Eve),

 Subreviewer(p1,Bob,Eve),

 Decided-subrev(p1,Carol,Eve),

 Subreviewer(p1,Carol,Eve),

 Submitted-review(p1,Bob,Eve)}

Carol:AddReview(p1,Carol,Eve);

 requires the presence of PCmember(Carol),

 Reviewer(p1,Carol),PCM-review-menu-en(),

 PCM-review-editing-en().

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Sub-anonymous(),

 Author(p2,Eve), PCM-review-editing-en(),

 View-sub-by-chair-permitted(),

 Chair-review-en(), PCM-review-menu-en(),

 Review-assig-enabled(), Reviewer(p1,Bob),

 Reviewer(p1,Carol),

 Requested-subrev(p1,Bob,Eve),

 Requested-subrev(p1,Carol,Eve),

 Decided-subrev(p1,Bob,Eve),

 Subreviewer(p1,Bob,Eve),

 Decided-subrev(p1,Carol,Eve),

 Subreviewer(p1,Carol,Eve),

 Submitted-review(p1,Bob,Eve),

 Submitted-review(p1,Carol,Eve)}

 In this case the model state mo has evolved during the

scenario to the goal state
 . The ground atomic formulae

Submitted-review(p1,Bob,Eve) and

Submitted-review(p1,Carol,Eve) are in
 . This means that

Eve has managed to write two reviews for the same paper

and get them submitted to the system. Similarly, Eve could

have written all the reviews of that particular paper. Conse-

quently, EasyChair fails the property as a single reviewer

can determine the outcome of a paper.

B Proof for the attack on property 2

 We now show how the model state evolves through the

attack strategy. At each step, we explicitly list, when appro-

priate, the list of ground atomic formulae that has to be ab-

sent or present to execute the following action from the

model state:

Alice:AddReviewerAssignment(p2,Bob);

 requires the presence of Chair(Alice),

 PCmember(Bob), Review-assig-enabled().

 requires the absence of Conf-of-interest(p2,Bob).

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Author(p2,Eve),

 Conf-of-interest(p1,Alice), PCM-review-editing-en(),

 View-sub-by-chair-permitted(), Chair-review-en(),

 PCM-review-menu-en(), Sub-anonymous(),

 Review-assig-enabled(), Reviewer(p2,Bob)}

Bob:RequestReviewing(p2,Bob,Eve);

 requires the presence of PCmember(Bob),

 Reviewer(p2,Bob), PCM-review-menu-en().

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Author(p2,Eve),

 Conf-of-interest(p1,Alice), PCM-review-editing-en(),

 View-sub-by-chair-permitted(), Chair-review-en(),

 PCM-review-menu-en(), Sub-anonymous(),

 Review-assig-enabled(), Reviewer(p2,Bob),

 Requested-subrev(p2,Bob,Eve)}

Eve:AcceptReviewingRequest(p2,Bob,Eve);

 requires the presence of PCmember(Bob),

 Reviewer(p2,Bob), PCM-review-menu-en().

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Author(p2,Eve),

 Conf-of-interest(p1,Alice), PCM-review-editing-en(),

 View-sub-by-chair-permitted(), Chair-review-en(),

 PCM-review-menu-en(), Sub-anonymous(),

 Review-assig-enabled(), Reviewer(p2,Bob),

 Decided-subrev(p2,Bob,Eve),

 Subreviewer(p2,Bob,Eve)}

Bob:AddReview(p2,Bob,Eve);

 requires the presence of PCmember(Bob),

 Reviewer(p2,Bob), PCM-review-editing-en(),

 PCM-review-menu-en().

 = fChair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Author(p2,Eve),

 Conf-of-interest(p1,Alice), PCM-review-editing-en(),

 View-sub-by-chair-permitted(), Chair-review-en(),

 PCM-review-menu-en(), Sub-anonymous(),

 Review-assig-enabled(), Reviewer(p2,Bob),

 Decided-subrev(p2,Bob,Eve),

 Subreviewer(p2,Bob,Eve),

 Submitted-review(p2,Bob,Eve)}

 In this case the model has evolved to the goal state where

ground atomic formula Submittedreview(p2,Bob,Eve) is in

 . This means that Eve has managed to submit a review

for her own paper p2. EasyChair fails this property as it al-

lows a paper’s reviewers to submit a review written by the

paper’s author herself.

C Proof for the attack on property 3

We show how the model state evolves through the attack

strategy:

Alice:AddReviewerAssignment(p1,Bob);

 requires the presence of Chair(Alice),

 PCmember(Bob)Review-assig-enabled().

 requires the absence of Conf-of-interest(p1,Bob)

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

20

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 2, NUMBER 6,

 Author(p1,Marvin), Author(p2,Eve),

 Conf-of-interest(p1,Alice), PCM-review-editing-en(),

 View-sub-by-chair-permitted(), Chair-review-en(),

 PCM-review-menu-en(), Sub-anonymous(),

 Review-assig-enabled(), Reviewer(p1,Bob)}

Bob:AddReview(p1,Bob,Bob);

 requires the presence of PCmember(Bob),

 Reviewer(p1,Bob), PCM-review-menu-en(),

 PCM-review-editing-en().

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Author(p2,Eve),

 Conf-of-interest(p1,Alice), PCM-review-editing-en(),

 View-sub-by-chair-permitted(), Chair-review-en(),

 PCM-review-menu-en(), Sub-anonymous(),

 Review-assig-enabled(), Reviewer(p1,Bob),

 Submitted-review(p1,Bob,Bob)}

Alice:ShowReview(p1,Bob,Bob);

 requires the presence of Chair(Alice),

 Chair-review-en().

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Author(p2,Eve),

 Conf-of-interest(p1,Alice), PCM-review-editing-en(),

 View-sub-by-chair-permitted(), Chair-review-en(),

 PCM-review-menu-en(), Sub-anonymous(),

 Review-assig-enabled(), Reviewer(p1,Bob),

 Submitted-review(p1,Bob,Bob)}

Alice:AddReview(p1,Carol,Carol);

 requires the presence of Chair(Alice),

 PCmember(Bob), Reviewer(p1,Carol),

 PCM-review-menu-en(), PCM-review-editing-en().

 = {Chair(Alice), PCmember(Bob), PCmember(Carol),

 Author(p1,Marvin), Author(p2,Eve),

 Conf-of-interest(p1,Alice), PCM-review-editing-en(),

 View-sub-by-chair-permitted(), Chair-review-en(),

 PCM-review-menu-en(), Sub-anonymous(),

 Review-assig-enabled(), Reviewer(p1,Bob),

 Submitted-review(p1,Bob,Bob),

 Submitted-review(p1,Carol,Carol)}

 We can see that
 is the goal state

 as chair Alice

has managed to submit a review to the paper p1 as if she

were the PC member Carol.

References

[1] Thomas Baignères and Matthieu Finiasz. iChair

 conference management system.

 http://lasecwww.epfl.ch/iChair/.

[2] Moritz Becker, Cedric Fournet, and Andrew Gor-

 don. Design and semantics of a decentralized au-

 thorization language. In Computer Security Found-

 ations Symposium, 2007. CSF ’07. 20th IEEE, pa-

 ges 3–15, 2007.

[3] Moritz Y. Becker. Cassandra: flexible trust man

 agement and its application to electronic health rec

 ords. PhD thesis, Computer Laboratory, University

 of Cambridge, 2005.

[4] Moritz Y. Becker. Specification and analysis of

 dynamic authorisation policies. Computer Security

 Foundations Symposium, IEEE, 0:203–217, 2009.

[5] Moritz Y. Becker and Sebastian Nanz. A logic for

 state-modifying authorization policies. In European

 Symposium on Research in Computer Security,

 2007.

[6] Moritz Y. Becker and Peter Sewell. Cassandra: dis-

 tributed access control policies with tunable expre-

 ssiveness. 5th IEEE International Workshop on

 Policies for Distributed Systems and Networks

 (POLICY), 2004.

[7] Moritz Y. Becker and Peter Sewell. Cassandra:

 flexible trust management, applied to electronic

 health records. 17th IEEE Computer Security

 Foundations Workshop (CSFW), 2004.

[8] John DeTreville. Binder, a logic-based security lan-

 guage. In Proceedings of the 2002 IEEE Symposi-

 um on Security and Privacy, 2002.

[9] Kathi Fisler, Shriram Krishnamurthi, Leo A. Mey-

 erovich, and Michael Carl Tschantz. Verification

 and changeimpact analysis of access-control poli-

 cies. In ICSE’05, St. Louis, Missouri, USA, May

 2005.

[10] Yuri Gurevich and Itay Neeman. DKAL: Distrib-

 uted-knowledge authorization language. In

 CSF ’08: Proceedings of the 2008 21st IEEE Com-

 puter Security Foundations Symposium, volume 0,

 pages 149–162, Washington, DC, USA, 2008.

 IEEE Computer Society.

[11] Yuri Gurevich and Itay Neeman. DKAL 2 : A

 simplified and improved authorization language.

 Technical report,Microsoft Research - Cambridge,

 2009.

[12] Shai Halevi. Sourceforge.net: Web submission

 and review software. Available online at

 http://sourceforge.net/projects/websubrev.

[13] Eddie Kohler. HotCRP conference management

 software. http://www.cs.ucla.edu/~kohler/

 hotcrp/index.html.

[14] N. Li. Delegation Logic: A Logic-based Approach

 to Distributed Authorization. PhD thesis, New

 York University, New York, Sep 2000.

[15] Ninghui Li and John C. Mitchell. Datalog with

 constraints: A foundation for trust management

 languages. In Proceedings of the Fifth Interna-

 tional Symposium on Practical Aspects of Declar-

 ative Languages, January 2003.

[16] Ninghui Li, John C. Mitchell, and William H.

 Winsborough. Design of a role-based trust manag-

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

21

MODELLING DYNAMIC ACCESS CONTROL POLICIES FOR WEB-BASED COLLABORATIVE SYSTEMS

 ement framework. In Proc. IEEE Symposium on

 Security and Privacy, Oakland, May 2002.

 [17] Ninghui Li, John C. Mitchell, William H. Wins-

 borough, Kent E. Seamons, Michael Halcrow, and

 Jared Jacobson. RTML: a role-based trust-manag-

 ement markup language. Technical report, Purdue

 University, 2004. CERIAS TR 2004-03.

[18] Ninghui Li, William H. Winsborough, and John C.

 Mitchell. Distributed credential chain discovery in

 trust management: extended abstract. In ACM

 Conference on Computer and Communications Se

 curity, pages 156–165, 2001.

[19] Swee-Won Lo, Raphael C.-W. Phan, and Bok-Min

 Goi. On the Security of a Popular Web Submission

 and Review Software (WSaR) for Cryptology

 Conferences. In WISA ’07: the 8th International

 Workshop on Information Security Applications,

 Lecture Notes in Computer Science. Springer,

 2007.

[20] D. McDermott and J. Doyle. Nonmonotonic logic

 1. Artificial Intelligence, 13:41–72, 1980.

[21] Raphael C.-W. Phan and Huo-Chong Ling. On the

 insecurity of the Microsoft Research Conference

 Management Tool (MSRCMT) system. In CITA

 2005: Proceedings of 4th International Conference

 on IT in Asia, pages 75–79, 2005.

[22] Hasan Qunoo and Mark Ryan. EC model in X-pol

 icy. online at http://www.cs.bham.ac.uk/~hxq/

 X-policy/, Dec 2009.

[23] Andrei Voronkov. EasyChair conference system.

 http://www.easychair.org/.

[24] Nan Zhang, Mark Ryan, and Dimitar P. Guelev.

 Synthesising verified access control systems in

 XACML. In 2004 ACM Workshop on Formal

 Methods in Security Engineering, pages 56–65,

 Washington DC, USA, Oct 2004. ACM Press.

Biographies

 HASAN N. QUNOO I am a researcher in Computer Se-

curity. I am a member of Computer Security Group at The

University of Birmingham. I do teaching and research. My

research is focusing on verifying access control policies via

model checking. Dr. Qunoo may be reached at

hqunoo@iugaza.edu.ps

 MARK D. RYAN I am Professor in Computer Security

and EPSRC Leadership Fellow in the School of Computer

Science at the University of Birmingham, U.K.

mailto:hqunoo@iugaza.edu.ps

